MARK SCHEME for the May/June 2007 question paper

9701 CHEMISTRY

9701/04

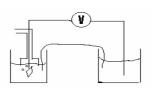
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.


CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

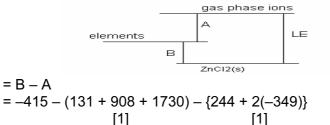
Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2007	9701	04

1 (a)

salt bridge + voltmeter zinc metal + Zn²⁺ H_2 (in, *not* out) + H^+ Pt electrode all solutions at 1 mol dm⁻³ T = 298K or 25°C

[1] [1] [1]

[1]


[1] [1] [6]

(b)

prine) zinc [1]
ine [1] (H ₂ or zinc) (ignore)
en [1] hydrogen [1]

[1] for each product in correct place [4] [4]

(c)

[1]

(correct answer = [3]: deduct [1] for each error) [3]

(d) (i)

LE

= B – A

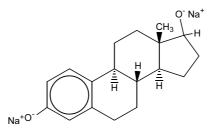
- instrumental method (e.g. spectrophotometer/colorimeter/conductance meter)
- what is measured (e.g. absorbance/transmission at a stated wavelength or by use of a "suitable" (green) filter or conductance/resistance)
- measurement of time
- relation of time to rate (e.g. gradient of absorbance/time graph, or rate \propto 1/t)
- repeat with different [Zn²⁺], (but the same [PAR])
- relation of rate to [Zn²⁺] (either by a plot or by simple proportion)

(all 6 points are unconditional on each other) any 5 points [5]

(ii)	e.g. add Br ₂ (aq)	[1]
	decolourises <i>or</i> produces a white ppt.	
	or add FeCl ₃ (aq or "neutral"); purple colour produced	[1] + [1] [2]

[Total: 20]

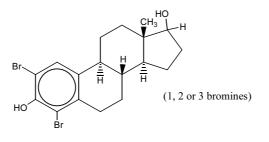
	Page 3			Mark Sch	neme		Syllabus	Paper	
			GCE A/AS	EVEL –	May/June 2	007	9701	04	
2	(a) 2Ca((NO ₃) ₂	→ 2CaO + 4	4NO ₂ + O ₂				(or x ½)	[1] [1]
	(cat) (<i>or</i> ic	ionic size/ra onic charge	dius increa density deo	ases down creases)	r temperature the group (ion) decreas				[1] [1] [1] [3]
		$16 = O^{+} 17$ $14 = N^{+} 16$ $\therefore \mathbf{A} = H_2O$			30 = NO⁺		(ignore charge (ignore charges) (or in equatic	all 5 any 4 any 3	[1] [3] <i>[2]</i> [1] [1]
									[4] [0]
	(11)	NH_4NO_3 —	$\longrightarrow N_2O$	+ 2H ₂ O					[1] [6]
								[Total: 10	max. 9]
3		2CO + O ₂ 2PbO ₂ ——					} (0,	r x ½)	[1]
	• •	+4 state bec or +2 state b			vn the group down the gro	up			[1] [2]
	(b) (i) I	Pb ^{II} : Pb ^{IV} =	2:1						[1]
	(ii)	Pb ₃ O ₄ ——	\rightarrow 3PbO	+ ½O ₂					[1]
	(iii)	Pb ₃ O ₄ + 4	HNO ₃ —	→ 2Pb((NO ₃) ₂ + Pt	0O ₂ + 2H	₂ O		[1]
		PbO/Pb(II) is as PbO ₂ doe or PbO does	es not react		$O_2/Pb(IV)$ alt with HNO_3				[1] [1] [5]
	• •	+ 2NaOH T SnO₂ or Pt		Na₂SnO₂	+ H ₂ O		(or Na₂Sn(C	OH)₄ etc.)	[1] [1]
								[Total: 8]


	Page 4			Syllabus	Paper
		GCE A/AS LEVEL – M	ay/June 2007	9701	04
4	(a)	(between axes)	Ψ	i.e. along axes)	
		[1]	(x ⁻ y ⁻ [1]	, J.	[2
	(d) rep so	nds have (lone) pairs (of electrons) electrons in orbitals pointing towards elled/have higher energy hese electrons (i.e. the 2-orbital grou	-	$I_{x^2} - d_{y^2}$	[1] [1]
		e higher energy <i>(or</i> in diagram) the 3-orbital group has the <i>lower</i> energy	.ax]		[1] [
	(c) (i)	C = red D = blue			[1] + [1]
	(ii)	C , because absorption is at lower wa	avelength/higher frequ	ency	[1] [:
					[Total: 8
5	(a) I: Ⅱ: Ⅲ: Ⅳ:	$Cl_2 + AlCl_3/Fe/etc$ $Cl_2 + hf$ $KMnO_4 + H^+$ $SOCl_2 \text{ or } PCl_5/PCl_3 \text{ or } P + Cl_2$ (for I, II and IV, deduct a mark ([1]) (for I, mention of hf negates the may (for I and II, if Cl_2 is omitted in one	ark)		[1] [1] [1] [1]
	(b) I: III:	electrophilic substitution oxidation <i>or</i> redox (NOT oxygen	ation)		[1] [1] [2
	ste	S C ₆ H₅-CH₂CN D V: NaCN/KCN heat (<i>or</i> 50-80°C) + ethanol/alco D VI: LiA <i>t</i> H₄ <i>or</i> H₂ + Ni/Pt/Pd/Rh <i>or</i>			[1] [1] [1] [1] [4
	(d)	compound	reagent		

compound	reagent			
compound	cold water	hot NaOH(aq)		
E	no reaction	no reaction		
F	no reaction	C ₆ H₅CH₂OH		
G	C₀H₅CO₂H	C₀H₅CO₂ [−] Na ⁺		

6 x [1] **[6]**

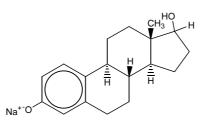
Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2007	9701	04


- 6 (a) (i) one correct atom circled
 - (ii) 5 (chiral centres)
 - (b) (i) sodium metal

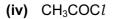
(charges not needed) [1] + [1]

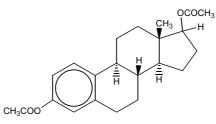
(if >1 are circled, all must be correct)

(ii) Br₂(aq)

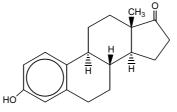


[1]


[1]


[1] **[2]**

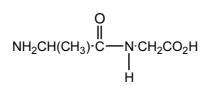
(iii) NaOH(aq)


(charges not needed) [1]

[1]+ [1]

(v) hot acidified $K_2Cr_2O_7$

[1] (if one or more OH groups have been omitted in (ii), (iii) or (v) deduct [1] mark) [7]


[Total: 9]

© UCLES 2007

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2007	9701	04

7 (a) (i)

- addition requires an unsaturated/double bond or alkene/C=C
- condensation **produces a small molecule** *or* water as well as the polymer *or* loss of mass occurs on polymerisation
- the empirical formula of an addition polymer is the same as that of the monomer any two [1] + [1]
- (ii) minimum is:

peptide link shown [1] ala-gly NOT gly-ala [1]

(b) X = deoxyribose

Υ	=	ph	os	pl	hate
		41		÷	-

Z = thymine

3 x [1] **[3]**

(c)	(i)	(met)- ser-arg-asp- gly (ignore leading met) whole sequence three in correct order = [1]. Deduct [1] mark if "start" or "stop" is included in the amino acid sequence	[2]
	(ii)	The amino acid gly (or the last amino acid) would be replaced by trp	[1] [3]
(d)	(i)	e.g. Huntington's, cystic fibrosis, haemophilia, sickle cell anaemia thalassemia, muscular dystrophy, Down's syndrome, phenylketonuria	[1]
	(ii)	Suitable explanation e.g. wrong amino acid coded <i>or</i> different aminoacid sequence <i>or</i> incorrect protein produced <i>or</i> extra chromosome (for Down's)results in/change in 3D structure/change in active site/loss of enzyme	[1]
		activity (or a specific description pertinent to the mentioned disease)	[1] [3]
			[Total: 13]

Pa	ge 7			Mark Schem	e	Syllabus	Paper	,
	-		GCE A/AS	S LEVEL – Ma		9701	04	
(a)	the –C0 the	cathc D ₂ H (a anod	ode/negative or –NH ₃ ⁺) group ca e/positive either: if H ⁺ gai [1] mark or: if H ⁺ gai	an lose a proto n/loss is descri c. n/loss is not de	n and the molec ibed but no direc	le moves towards ule moves towards ction of movement i rect movement of ic	-	
(b)	acio (i)	Q for	v pH will protonate ms mainly zwitter vay between (+) ar	ions, because		oH will deprotonate e <i>or</i> ends up		[1] [[1]
	(ii)	R is	larger, since it trav	vels more slowl	y/does not move	e as far as S		[1] [
(c)	(i)	Seco	ond phase is water	r/moisture (NO	T aqueous, NOT	stationary)		[1]
			solvent 1 solvent 1 C spot applied	A o So	e	Solvent		
						all 5 positi	ons correct 4 correct	[2] <i>[1]</i>
	(iii)	D						[1]
	(iv)	С						[1] [
							Ţ٦]	otal: 1

Page 8	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2007	9701	04
• •	properties e.g. raphite conducts electricity		
• la	yers in graphite slide over one another <i>or</i> is slippery <i>or</i> a	cts as a lubricant	t
	uckyballs are <i>more</i> slippery <i>or</i> have lower coefficient of fi ue to their property of being "molecular ball bearings"	riction	
• g	raphite has higher m.pt.		
• g	raphite has higher density		
• g	raphite has lower solubility		
• b	uckyballs can trap elements/atoms/particles within thems	elves	
• (;	Some comment about the strength in each of 3 dimensior	ns) (any three of the	<i>above)</i> 3 x [1]
(b) The (of gra	valls of) nano-sized test tubes consists of (rolled/single) s phite	sheets	[1]
The e	nds are half a buckyball (buckminsterfullerene)		[1]
	les are similar in size to the wavelength of uv light eflect/deflect/scatter (NOT absorb) the harmful radiation	1	[1] [1]
			[Total: