CANDIDATE NAME

CENTRE NUMBER

CHEMISTRY

9701/32
Paper 32 Advanced Practical Skills
May/June 2008
2 hours
Candidates answer on the Question Paper.
Additional Materials: As listed in the Instructions to Supervisors

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
You are advised to show all working in calculations.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 11 and 12.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 12 printed pages.

1 You are provided with the following.
FB 1, $3.00 \mathrm{moldm}^{-3}$ hydrochloric acid, HCl
Three tubes containing different mixtures of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and sodium hydrogencarbonate, NaHCO_{3}, each with a total mass of 5.00 g of mixture.

tube labelled	mass of $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{g}$	mass of $\mathrm{NaHCO}_{3} / \mathrm{g}$	\% by mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
FB 2	1.00	4.00	20.0
FB 3	2.50	2.50	50.0
FB 4	4.00	1.00	80.0

You are to determine the temperature change, $\Delta \mathrm{T}$, when the contents of each of the tubes FB 2, FB 3 and FB 4 react with an excess of hydrochloric acid, FB 1.
(a) (i) Calculate the volume of $3.00 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid required to react with 5.00 g of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Show your working.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

[$M_{\mathrm{r}}: \mathrm{Na}_{2} \mathrm{CO}_{3}, 106.0$]
(ii) Calculate the volume of $3.00 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid required to react with 5.00 g of sodium hydrogencarbonate, NaHCO_{3}. Show your working.

$$
\mathrm{NaHCO}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

[$M_{\mathrm{r}}: \mathrm{NaHCO}_{3}, 84.0$]
$35.00 \mathrm{~cm}^{3}$ of $3.00 \mathrm{moldm}^{-3} \mathrm{HCl}$ will be used in each experiment - an excess of hydrochloric acid.
(b) Read the following instructions before starting this section.

- Fill a burette with FB $1,3.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$.
- Support the plastic cup in a $250 \mathrm{~cm}^{3}$ beaker.
- Run $35.00 \mathrm{~cm}^{3}$ of acid from the burette into the cup.
- Measure the steady temperature of the acid in the plastic cup.
- Tip the contents of the tube labelled FB 2 into the acid as quickly as possible but take care to avoid overflow or acid spray. Stir with the thermometer, measure and record the highest or lowest temperature reached in the reaction.
- Make certain that all of the solid has been transferred from the tube to the cup. Tap the tube if necessary to dislodge any residual solid.
- Empty and rinse the plastic cup with water. Shake out any residual drops of water.
- Repeat the experiment for each of the tubes FB 3 and FB 4.

Record all measurements of temperature and the temperature changes, ΔT, in an appropriate form in the space below. Indicate clearly whether the temperature has increased or decreased in the reaction.
(c) Select masses of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} which can be used to prepare two further tubes, each containing a mixture which can be used in the same experiment as described above. The temperature change when each of these mixtures reacts with hydrochloric acid will be used with those above to plot five points on a graph.

tube labelled	mass of $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{g}$	mass of $\mathrm{NaHCO}_{3} / \mathrm{g}$
FB 5		
FB 6		

(d) Preparation of the tubes FB 5 and FB 6

You are provided with

- empty tubes labelled FB 5 and FB 6,
- sodium carbonate and sodium hydrogencarbonate.

Prepare each tube and record in an appropriate form in the space below

- all of your weighings,
- the mass of sodium carbonate in the mixture,
- the mass of sodium hydrogencarbonate in the mixture,
- the \% by mass of sodium carbonate in the mixture.
(e) Carry out the same experiment as in (b) for each of the tubes FB 5 and FB 6.

Record all temperature readings and the temperature change, $\Delta \mathrm{T}$, for each of the tubes.
(f) Plot $\Delta \mathrm{T}$ (y-axis, starting at $-10^{\circ} \mathrm{C}$) against the \% by mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the mixture (x-axis, starting at 0\%).
Remember - the temperature has increased in some experiments and decreased in others.
Draw the most appropriate straight line through the five plotted points. Extend this line until it crosses the y-axis.

(g) Record from the graph the temperature change when the mixture contains no sodium carbonate. This represents the temperature change for 5.00 g of sodium hydrogencarbonate.
$\Delta \mathrm{T}$, read from the graph for 0% sodium carbonate is
${ }^{\circ} \mathrm{C}$. [1]
(h) You are to use the value in (g), obtained from the graph, to calculate the enthalpy change for the reaction between sodium hydrogencarbonate and hydrochloric acid.

$$
\mathrm{NaHCO}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

(i) Calculate the energy change in the plastic cup when 5.00 g of NaHCO_{3} reacts with excess hydrochloric acid.
[4.3 J are absorbed or released when the temperature of $1.0 \mathrm{~cm}^{3}$ of solution changes by $1^{\circ} \mathrm{C}$.]
(ii) Calculate the enthalpy change, ΔH, for the reaction

$$
\mathrm{NaHCO}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g}) .
$$

Give your answer in kJmol^{-1}, correct to 3 significant figures. Include the appropriate sign.
[$\left.M_{\mathrm{r}}: \mathrm{NaHCO}_{3}, 84.0\right]$

$$
\Delta H=
$$

(i) Suggest the most significant source of error in this experiment.
\qquad
\qquad
(j) Suggest a modification to the experimental procedure that would reduce the error described in (i).
\qquad
\qquad
\qquad
\qquad
\qquad
(k) Do you think the method used is capable of producing an accurate value for the enthalpy change for the reaction of sodium hydrogencarbonate and hydrochloric acid?

Justify your answer by referring to the results of your experiment.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Total: 25]

2 The three solutions FB7, FB 8, and FB9 each contain one of the following.
a cation and the chloride ion manganese(II) sulphate, MnSO_{4} magnesium sulphate, MgSO_{4}
(a) Using the information on page 12 select two suitable reagents and use them to carry out a test to determine which solutions contain the sulphate ion.

In the space below, record details of the test performed and the observations made.

From this test, solutions FB \qquad and FB \qquad contain the sulphate ion.
(b) By selecting a further two reagents, carry out a test to confirm the presence of the chloride ion in the remaining solution.

In the space below, record details of the test performed and the observations made.

You are to perform the tests given in the table opposite on each of FB 7, FB 8 and FB 9 to identify and confirm the cation present in the solution.

Record details of colour changes seen, the formation of any precipitate and the solubility of any such precipitate in an excess of the reagent added.

Where gases are released they should be identified by a test, described in an appropriate place in the table.

You should indicate clearly at what stage in a test a change occurs.
Marks are not given for chemical equations.
No additional tests for ions present should be attempted.

test	observations with FB 7	observations with FB 8	observations with FB 9
(c)To 1 cm depth of solution in a test-tube, add aqueous sodium hydroxide drop-by- drop until it is in excess.			
(d)To 1 cm depth of solution in a test-tube, add aqueous ammonia drop-by- drop until it is in excess.			

(e) Observations made with aqueous sodium hydroxide should have indicated that one of the solutions contains either of two cations. Identify this solution and the two possible cations.

Solution \qquad could contain \qquad or \qquad
Make use of the Qualitative Analysis Notes on page 11 to suggest what further test you could do to identify which of the two ions was present.
\qquad
\qquad
\qquad
Carry out your suggestion using a boiling-tube. Record the results below and explain how this enables you to identify the ion present.
\qquad
\qquad
\qquad
(f) For each of the solutions FB 7, FB 8, and FB 9, identify the cation present and give supporting evidence from the observations made.

FB 7 contains
supporting evidence
\qquad
\qquad
\qquad
FB 8 contains
supporting evidence
\qquad
\qquad
\qquad
FB 9 contains \qquad
supporting evidence
\qquad
\qquad
\qquad
(g) Carry out the tests below on FB 7.

test	observations
To 1 cm depth of solution in a boiling-tube, add 2 cm depth of aqueous ammonia, then slowly add 2 cm depth of aqueous hydrogen peroxide.	
To 1 cm depth of solution in a boiling-tube, add 2 cm depth of aqueous hydrogen peroxide, then slowly add 2 cm depth of aqueous ammonia.	

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{A} l^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { ammonium, } \\ & \mathrm{NH}_{4}^{+}(\mathrm{aq}) \end{aligned}$	ammonia produced on heating	
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	no ppt. (if reagents are pure)	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
$\begin{aligned} & \text { iron(II), } \\ & \mathrm{Fe}^{2+}(\mathrm{aq}) \end{aligned}$	green ppt. insoluble in excess	green ppt. insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
$\begin{aligned} & \text { lead(II), } \\ & \mathrm{Pb}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. insoluble in excess	off-white ppt. insoluble in excess
$\begin{aligned} & \text { zinc, } \\ & \mathrm{Zn}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. soluble in excess

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, CO_{3}^{2-}	CO_{2} liberated by dilute acids
$\begin{aligned} & \text { chromate(VI), } \\ & \mathrm{CrO}_{4}^{2-}(\mathrm{aq}) \end{aligned}$	yellow solution turns orange with $\mathrm{H}^{+}(\mathrm{aq})$; gives yellow ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$; gives bright yellow ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$); gives white ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives pale cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$); gives white ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$); gives yellow ppt. with $\mathrm{Pb}^{2+}(\mathrm{aq})$
nitrate, NO_{3}^{-}(aq)	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and $\mathrm{A} l$ foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulphate, $\mathrm{SO}_{4}^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ or with $\mathrm{Pb}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulphite, $\mathrm{SO}_{3}^{2-}(\mathrm{aq})$	SO_{2} liberated with dilute acids; gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint
sulphur dioxide, SO_{2}	turns potassium dichromate(VI) (aq) from orange to green

