MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/23 Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

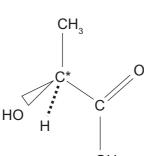
Page 2		Mark Scheme: Teachers' version	Syllabus	Paper
		GCE AS/A LEVEL – May/June 2010	9701	23
1	 (a) enthalpy change when 1 mol of a compound is formed (1) from its elements (1) in their standard states under standard conditions (1) 			[3]
		$\begin{array}{rl} & N_2H_4(I) \ + \ O_2(g) \ \rightarrow \ N_2(g) \ + \ 2H_2O(g) \\ \Delta H_f^{o}/kJ \ mol^{-1} \ \ +50.6 & -241.8 \\ \Delta H^o_{\ reaction} \ = \ 2(-241.8) \ - \ (+50.6) \ (1) \\ & = \ -534.2 \ kJ \ mol^{-1} \ (1) \end{array}$		
	(ii) <i>I</i>	Ξ_a is too high (1)		
		products are H_2O and N_2 which are harmless/non toxic or are already present in the atmosphere (1)		[4]
	(c) (i) '	dot-and-cross' diagram (1) ●●		
	I	H X N X H •X H		
	(ii)			
	(iii) r	ninimum is		
		$H \rightarrow N - N \leftarrow H$		
	é	allow bond angle around N atom between 109° and 104° ($^\circ$	1)	[4]

[1]

[Total: 12]

(d) -2 (1)

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE AS/A LEVEL – May/June 2010	9701	23
2	 (a) the energy required to remove one electron from each atom (1) in one mole of gaseous atoms (1) or the enthalpy change in kJ mol⁻¹ for (1) M(g) → M⁺(g) + e⁻(1) 			[2]	
	(b) (i)	oute	ionisation energy decreases down Group 1 (1) rmost electron is further from nucleus as greater shielding (1)		
	(ii)		rmost electron experiences less attraction prmation of M^+ cation becomes easier down Group 1 (1)	[3]
	(c) (i)	n(Li)	$h = \frac{0.83}{6.9} = 0.12 (1)$		
	(ii)	0.12	bl Li \rightarrow 1 mol H ₂ mol Li $\rightarrow \frac{1 \times 0.12}{2} = 0.06$ mol H ₂ (1) me of H ₂ = 0.06 × 24.0 = 1.44dm ³ (1)		
	(iii)	0.12	bl Li \rightarrow 2 mol LiOH mol Li \rightarrow 0.12 mol LiOH in 0.50 dm ³ (1) H] = $\frac{0.12 \times 1}{0.50}$ = 0.24 mol dm ⁻³ (1)		[5]
	or	white	ourns with a yellow flame solid formed ⁻ of chlorine disappears (1)		


 $2Na + Cl_2 \rightarrow 2NaCl(1)$

[2]

[Total: 12]

Page 4			me: Teachers' version	Syllabus	Paper
		GCE AS/A L	EVEL – May/June 2010	9701	23
3	(a) (i) Ca ((1)			
	(ii) Son	r C [allow H (H ₂ O ₂) or	N (NO, NO ₂)] (1)		
	(iii) He ((1)			
	(iv) Al(*	1)			
	(v) Si o	r Ge (1)			
	(vi) Al(1	1)			[6]
	(b) any two	from N or O or F (1)			[1]
	(c) (i) Al ₂ C	D ₃ or SiO ₂ (1)			
	(ii) SO ₂ and	or P_2O_3/P_4O_6 (1 and)		
	SO ₃		1)		
	(iii) Na ₂ 0	O (1)			
	(iv) Al ₂ C	D ₃ (1)			[5]
					[Total: 12]
4	(a) reaction	1 free radical sub	stitution (1)		
-		12 elimination (1)			[2]
	reaction				[2]
	(b) (i) in re	eaction 4	CH ₃ C(OH)(CN)CH ₃ (1)		
	(ii) in re	eaction 3	I [−] (1)		
	· · ·	eaction 3 n reaction 4	CH₃I CH₃COCH₃ (1)		[3]
	•••	s which has a lone pa reacts with an electro	for of electrons on deficient (δ +) centre in a mole	ecule (1)	[1]
	(d) in reaction				[2]
	in reaction	on 4 CN⁻(1)			[2]
	(e) π bondin	ig is electron rich (1)			[1]
					[Total: 9]

Page 5	Page 5 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – May/June 2010		23

OH

[3]

(b)

5

(a)

)				
		reagent(s)	condition(s)	
	step 1	$Cr_2O_7^{2-} / H^+$	distil off aldehyde	
		(1)	(1)	
	step 2	HCN in presence of CN [−] or KCN + dil H ₂ SO ₄ (1)	room temperature (1)	
	step 3	aqueous mineral acid/ /H ₂ SO ₄ /HC/ not HNO ₃ (1)	heat under reflux (1)	

in each case, the reagent must be correct before the condition mark is awarded

[6]

(c) (i) a protein (1)

(ii) 2,4-dinitrophenylhydrazine/Brady's reagent (1) yellow-orange-red ppt. (1)
(iii) acidified K₂Cr₂O₇ or Lucas test or CH₃CO₂H/H⁺ (1) colour changes or cloudiness or fruity smell from orange to green (1)
(iv) LiA/H₄/NaBH₄ or H₂/Ni etc. (1)

[6]

[Total: 15]