MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/41 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2		Mar	Mark Scheme: Teachers' version Syllabus		Paper	,	
	GCE AS/A LEVEL – May/June 2010 9701						41	
1	(a) P: burns with white / yellow flame <i>or</i> copious white smoke / fumes produced							
	$4P (or P_4) + 5O_2 \longrightarrow P_4O_{10}$						(1)	
	S:	S: burns with blue flame / choking / pungent gas produced						
		S + ($O_2 \longrightarrow S$	O ₂			(1)	[4]
	(b) (i) $2 \operatorname{Ca}_3(\operatorname{PO}_4)_2 + 6 \operatorname{SiO}_2 + 10 \operatorname{C} \longrightarrow 1 \operatorname{P}_4 + 6 \operatorname{CaSiO}_3 + 10 \operatorname{CO}$ (ii)						(2)	
	()		allotrope	type of structure	type c	of bonding		
			white	simple / molecular	со	valent		

	white	simple / molecular	covalent	
	red	giant / polymeric	covalent	
				(4)
(iii)	P	P	尽	
	P	P		

P

P-

white $P_4(1)$

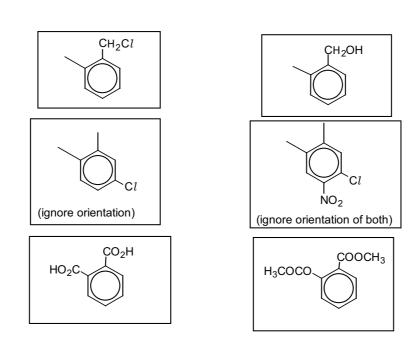
(in each case P has to be trivalent. Many alternatives allowable for the polymeric red P) (2) (8 max 7) [7]

red P_n (1)

[Total: 11]

Page 3			Mark Scheme: Teachers' version	Syllabus	Paper	*
			GCE AS/A LEVEL – May/June 2010	9701	41	
2	(a)	coloured variable formation catalytic	(1) (1) (1) (4 max 3)	[3]		
	(b)	(green is ppt is Ni	; [Ni(H ₂ O) ₆] ²⁺) (OH) ₂		(1)	
		blue solu	ition is $[Ni(NH_3)_6]^{2+}$ or $[Ni(NH_3)_4]^{2+}$ or $[Ni(NH_3)_4(H_2O)_2]^{2+}$	2+	(1)	
		formed b	y ligand exchange		(1)	
		Ni ²⁺ + 2	$2OH^{-} \longrightarrow Ni(OH)_{2}$		(1)	
		Ni(OH) ₂		(1) (5 max 4)	[4]	
	(c)	M _r = 58	.7 + 48 + 6 + 28 + 32 = 172.7 (173)		(1)	
		n(Ni) =	4.00/172.7 = 0.0232 mol		(1)	
		mass(Ni) = 0.0232 × 58.7 = 1.36g			
		percenta	ge = 100 × 1.36 / 3.4 = 40.0 %		(1)	[3]
					[Total	: 10]
3	(a)	PbO ₂ de	composed into PbO (and O_2). (Sn O_2 is stable)			[1]
	(b)	or P	l_4 dissociates into Cl_2 and $PbCl_2$ (white solid) $bCl_4 \longrightarrow PbCl_2 + Cl_2$ or in words			
		Cl ₂	+ 2KI \longrightarrow 2KC l + I ₂		(1)	
		E°(C	\mathcal{L}_2/Cl^-) is more positive than $E^{\mathrm{o}}(\mathrm{I}_2/\mathrm{I}^-)$		(1)	
		(ii) SnC	\mathcal{I}_4 is more stable than PbC \mathcal{I}_4 / answers using E ^o accept	ed	(1) (5 max 4)	[4]
	(c)	(i) C <i>l</i> :C	::Cl or Cl=C–Cl		(1)	
		bent	or non-linear or angle = 100–140°		(1)	
		(iii) CC1	$_{2}$ + H ₂ O \longrightarrow CO + 2HCl		(1)	[3]

(ii) $CCl_2 + H_2O \longrightarrow CO + 2HCl$ (1) [3]


[Total: 8]

	Page 4		Mark Scheme: Teachers' version	Syllabus 9701	Paper		
			GCE AS/A LEVEL – May/June 2010	41			
4	(a)	hydroge	n bonding		(1)		
			H ₂ CH ₂ CH ₂ OHOHCH ₂ CH ₂ NH ₂ or NH ₂ CH ₂ CH ₂ OHN ond from OH group to either OH or NH ₂)	NH ₂ CH ₂ CH ₂ OH	(1)	[2]	
	(b)		nine is more basic than phenylamine lone pair on N is delocalised over ring in phenylamine ion)	e (so less availab	(1) le for		
		or the propyl group is electron-donating, so the lone pair is more available					
	(c)	HOCH ₂ CH ₂ NH ₂ + H ⁺ \longrightarrow HOCH ₂ CH ₂ NH ₃ ⁺ or HOCH ₂ CH ₂ NH ₂ + HCl \longrightarrow HOCH ₂ CH ₂ NH ₃ ⁺ Cl ⁻ or HOCH ₂ CH ₂ NH ₂ + H ₂ O \longrightarrow HOCH ₂ CH ₂ NH ₃ ⁺ OH ⁻ (reaction with any acceptable Bronsted acid accepted)					
	(d)	(i) X is	CH ₃ CH ₂ CN		(1)		
		 (ii) step 1 is KCN in ethanol, heat [HCN negates] step 2 is H₂+Ni / Pt or LiAlH₄ or Na in ethanol [NOT NaBH₄ or Sn/HCI] 				[3]	
	(e)	ethanolamine: Na or $Cr_2O_7^{2-}/H^+$ or MnO_4^{-}/H^+ or $PCl_3/PCl_5/SOCl_2$ effervescence / bubbles pro- colour turns from orange to purple colour disappears (1) steamy fumes					
		phenyla Br ₂ (or HN	aq) decolouris	ses / white ppt for dye formed	rmed (1)	[4]	

[Total: 12]

	Pa	ige 5	5	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2010	Syllabus 9701	Paper 41		
5	(a)	(i)	E° =	= 0.40 – (–0.83) = 1.23V	·······	(1)		
		(ii)	2H ₂	+ $O_2 \longrightarrow 2H_2O$		(1)		
		(iii)		electrode will become more negative electrode will also become more negative / less positive	e	(1) (1)		
		(iv)	no c	hange ecf from (iii)		(1)		
		(v)	incre	eased conductance or lower cell resistance or increa	sed rate of react	tion (1)	[6]	
	(b)			$ 1.47 - (-0.13) = 1.60V $ $ D_2 + Pb + 4H^+ \longrightarrow 2Pb^{2+} + 2H_2O $		(1) (1)		
		(iii) $PbO_2 + Pb + 4H^+ + 2SO_4^{2-} \longrightarrow 2PbSO_4(s) + 2H_2O$						
		(iv) E ^o _{cell} will increase						
			_	Pb ²⁺] decreases, E _{electrode} (PbO ₂) will become more posit become more negative	ive, but E _{electrode} (Pb) (1)	[5]	
						[Total:	11]	
6	(a)	(i)	soc	Cl_2 or PCl_5 or PCl_3		(1)		
		(ii)	or C	$CO_{2}H + SOCl_{2} \longrightarrow CH_{3}COCl + SO_{2} + HCl$ $CH_{3}CO_{2}H + PCl_{5} \longrightarrow CH_{3}COCl + POCl_{3} + HCl$ $SCH_{3}CO_{2}H + PCl_{3} \longrightarrow 3CH_{3}COCl + H_{3}PO_{3}$		(1)	[2]	
	(b)	(i)		$C_6H_5CO_2C_2H_5$ $C_6H_5CONH_2$		(1) (1)		
		(ii)	este amio			(1) (1)		
		(iii)	nucl	eophilic substitution / condensation		(1)	[5]	
	(c)	(i)		C <i>l</i> COCOC <i>l</i> C <i>l</i> COCOCOC <i>l</i>		(1) (1)		
		(ii)	hydr	rogen bonding		(1)		
		(iii)	or le		·			
			avai basi	lable due to electronegative oxygen [NOT: E is neutral, c]		is (1)		
		(iv)	cond	densation (polymer) <i>or</i> polyester		(1)	[5]	
						[Total:	12]	

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	41

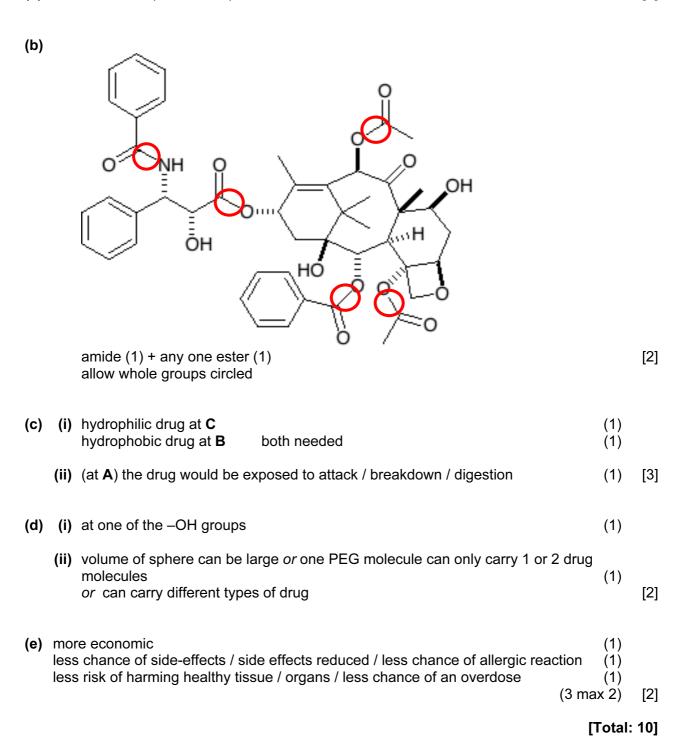
[Total: 6]

8 (a)

Block letter	Identity of compound
J	Deoxyribose (NOT "sugar" or "pentose")
К	Guanine
L	Phosphate
М	Thymine

All 4 correct score 3 marks, 3 score 2, 2 score 1	[3]
(b) hydrogen bonds (1) between the bases (1)	[2]

(c)	1 2 3 4	RNA is a single strand; DNA is double strand RNA contains ribose; DNA contains deoxyribose RNA contains <u>uracil</u> ; DNA contains <u>thymine</u> RNA is shorter than DNA	(1) (1) (1) (4 max 3)	[3]
(d)		NA – copies the DNA gene sequence forms a template for a particular polypeptide / in protein synthesis	(1)	
	tRN	IA – carries amino acids to the ribosome	(1)	[2]
			[Total:	10]


Page 7						Teachers' version			Syllabus		Paper		
				0	SCE AS/A	LEVE	EL – May/June 201	0		9701		41	
9	9 (a) spinning proton prod these can align with								ents			(1) (1)	[2]
	(b) field experienced by protons is influenced by adjacent atoms / protons are in two different chemical environments peaks are in the area ratio 3 : 1 (methyl to –OH protons) or are at 0.5 – 6.0δ and 3.3 – 4.0δ									vo (1) (1)	[2]		
	(c) (i)												
			(CH₃CH₂C	O₂H		CH ₃ CO ₂ CH ₃				CH₃		
			р	ropanoic	acid		methyl ethanoate			ethyl metha	noate		
										all for (2	2) two fo	or (1)	
		(ii)					methyl ethanoate ch have 3 different p	roton	envir	onments h	ut the	(1)	
					ws only 2			roton	CIIVII	onnents, b		(1)	
			A is	OCH₃,	B is CH	₃CO						(1)	
		(iii)		pound – p -OH proto	propanoic pn	acid	<i>or</i> ethyl methanoa <i>or</i> the H–CO proto					(1)	[6]
	(d)	(i)	dista	ance betw	een atom	s / bor	nd lengths / bond an	gles				(1)	
		(ii)	hydr	ogen atoi	ns					[Total: ²	(1) 12 max	[2] 10]
												T . 4 . I .	407

[Total: 10]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	41

[1]

10 (a) ester or amide (allow nitrile)

