UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

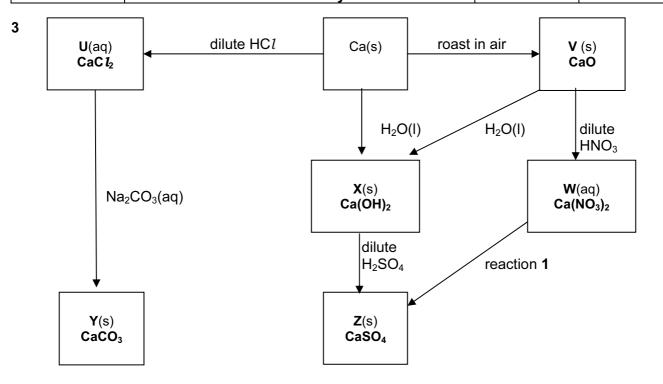
• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version Sylla		Paper	aper	
<u> </u>	GCE AS/A LEVEL – May/June 2011	9701	21		
` ') alkanes/paraffins not hydrocarbon		(1)	[1]	
(b) 2 C ₁₄ H ₃₀	$_{0}$ + 43 O_{2} \rightarrow 28 CO_{2} + 30 $H_{2}O$ or				
C ₁₄ H ₃₀ +	$^{-43}I_2O_2 \rightarrow 14 CO_2 + 15 H_2O$		(1)	[1]	
(c) (i) ma	ss of C ₁₄ H ₃₀ burnt				
	<u>5 x 10.8</u> = 88.506 = 88.5 t 1000		(1)		
(ii) ma	ss of CO ₂ produced				
	of $C_{14}H_{30} = (14 \times 12 + 30 \times 1) = 198$		(1)		
	198 t of $C_{14}H_{30} \rightarrow 28 \times 44 \text{ t of } CO_2$		(1)		
00.0	5 t of $C_{14}H_{30} \rightarrow 28 \times 44 \times 88.5$ 2 x 198		(1)		
= 2	75.3 t of CO ₂		(1)		
	w 275.4 t if candidate has used 88.506 w ecf on wrong value for $M_{\rm r}$ of $\rm C_{14}H_{30}$			[4]	
(d) $n = \frac{PV}{DT}$	$= \frac{6 \times 10^5 \times 710 \times 10^{-6}}{8.31 \times 293}$		(1)		
= 0.17			(1)	[2]	

(e) $P = \frac{nRT}{V} = \frac{0.175 \times 8.31 \times 278}{710 \times 10^{-6}}$ (1)

 $= 569410.5634 \text{ Pa} = 5.7 \times 10^5 \tag{1}$


allow ecf on (d) [2]

[Total: 10]

	Page 3		ge 3 Mark Scheme: Teachers' version S GCE AS/A LEVEL – May/June 2011		Syllabus	Paper 21	
					9701		
2	(a)	(i)	break large hydrocarbons into smaller hydrocarbons or break down large hydrocarbons		(1)		
				ller hydrocarbons are more useful or ller hydrocarbons are more in demand		(1)	
		(ii)		g high temperatures/thermal cracking or g catalysts/catalytic cracking		(1)	
		(iii)	C ₁₄ F C ₁₄ F C ₁₄ F	$H_{30} \rightarrow C_7 H_{16} + C_7 H_{14}$ or $H_{30} \rightarrow C_7 H_{16} + C_2 H_4 + C_5 H_{10}$ or $H_{30} \rightarrow C_7 H_{16} + C_3 H_6 + C_4 H_8$ or $H_{30} \rightarrow C_7 H_{16} + 2 C_2 H_4 + C_3 H_6$ ot allow any equation with H_2		(1)	[4]
	(b)	eth	anol h	nas hydrogen bonding, ethanethiol does not		(1)	[1]
	(c)	(i)	2C ₂ H	$_{5}$ SH + $_{9}$ / $_{2}$ O $_{2}$ \rightarrow 2 CO $_{2}$ + SO $_{2}$ + 3 H $_{2}$ O or $_{15}$ SH + 9 O $_{2}$ \rightarrow 4 CO $_{2}$ + 2 SO $_{2}$ + 6 H $_{2}$ O ect products ect equation which is balanced		(1) (1)	
		(ii)		CO₂ anced greenhouse effect al warming		(1) (1)	
			dam disso dam	ation of acid rain age to stonework of buildings/ olving of aluminium ions into rivers/ age to watercourses or forests/		(1)	
			•	atic life destroyed/ osion of metals		(1)	[6]
	(d)	hel	p dete	ect leaks of gas		(1)	[1]
	(e)	pre	ssure	cure of 450° C of $1-2$ atm radium(V) oxide/vanadium pentoxide catalyst		(1) (1) (1)	[3]

[Total: 15]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9701	21

(b) heat strongly in a test-tube or a boiling tube do not allow 'heat gently' or 'reflux' (1) [1]

V to **W**

$$CaO + 2HNO_3 \rightarrow Ca(NO_3)_2 + H_2O$$
(1)

U to Y
$$CaC l_2 + Na_2CO_3 \rightarrow CaCO_3 + 2NaC l$$
(1)

(ii)
$$2Ca(NO_3)_2 \rightarrow 2CaO + 4NO_2 + O_2$$
 (1) [4]

(d) $Na_2SO_4(aq)/K_2SO_4(aq)$ or formula of any soluble sulfate (1) [1]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9701	21

(e) (i) Ca to X

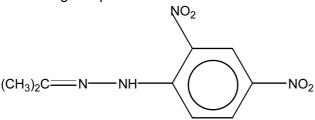
colourless gas formed/fizzing/effervescence/bubbles **or**Ca dissolves **or**white precipitate/suspension formed

(ii) strongly exothermic/vigorous reaction or steam formed/steamy fumes or surface crumbles do not allow white ppt.

(1) [2]

[Total: 13]

(1)


(1)

- 4 (a) (i) nucleophilic addition both words are necessary
 - (ii) NaCN and H₂SO₄ or HCN plus CN⁻ do not allow HCN on its own (1)
 - (iii) correct δ + and δ -, i.e.

$$c = 0$$

$$(1) [3]$$

(b) (i) correct organic product

C=N bond must be clearly shown (1) H_2O formed/ equation balanced (1) [2]

(ii)
$$H_3C$$
 $C = N - O - H$ H_3C (1) [1]

[Total: 6]

Page 6		Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2011	9701	21	
5	(a) CaC	$C_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$		(1)	[1]
	(b) (i)	step 1 electrophilic addition step 2 elimination or dehydrohalogenation		(1) (1) (1)	
	(ii)	reagent NaOH/KOH/OH ⁻ conditions in alcohol/ethanol only allow conditions mark if reagent is correct		(1) (1)	[5]
	(c) (i)	Q is CH ₃ CHO (as minimum) R is CH ₃ CO ₂ H (as minimum)		(1) (1)	
	(ii)	step 3 is addition step 4 is oxidation/redox		(1) (1)	[4]
	(d) (i)	combustion $C_2H_2(g) + {}^5I_2O_2(g) \rightarrow 2CO_2(g) + H_2O(I)$ or equation must be for the combustion of one mole of C_2H_2 H_2O must be shown as liquid correct state symbols in this equation		(1) (1)	
		formation $2C(s) + H_2(g) \rightarrow C_2H_2(g)$ no mark for state symbols here		(1)	
	(ii)	let Z be ΔH^{e}_{f} of $C_{2}H_{2}$			
		$C_2H_2 + {}^5/_2O_2 \rightarrow 2CO_2 + H_2O$ ΔH_f^e Z 0 2(-394) -286			
		ΔH_{c}^{e} = -1300 = 2(-394) + (-286) – Z whence Z = 2(-394) + (-286) – (-1300) = +226 kJ mol ⁻¹		(1)	
		value sign allow ecf on wrong equation		(1) (1)	[6]
				[Total:	161

5

[Total: 16]