## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

## MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

## 9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

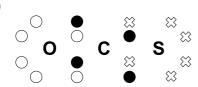
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

| Pa  | ge 2              | !                                                                  |                        | Scheme: Tea                                                  |                             |                                | Syllak          |                                        | Papei   | ^ |
|-----|-------------------|--------------------------------------------------------------------|------------------------|--------------------------------------------------------------|-----------------------------|--------------------------------|-----------------|----------------------------------------|---------|---|
|     |                   |                                                                    | GCE A                  | S/A LEVEL -                                                  | - May/June                  | 2012                           | 970             | 1                                      | 21      |   |
| (a) |                   |                                                                    |                        |                                                              |                             |                                |                 |                                        |         |   |
| (,  |                   | Na₂O                                                               | MgO                    | A <i>l</i> <sub>2</sub> O <sub>3</sub>                       | SiO <sub>2</sub>            | P <sub>4</sub> O <sub>10</sub> | SO <sub>2</sub> | C <i>l</i> <sub>2</sub> O <sub>7</sub> |         |   |
|     | a                 | alkaline                                                           | basic                  | amphoteric                                                   | acidic                      | acidic                         | acidic          | acidi                                  | С       |   |
|     | Na <sub>2</sub>   | <u>.</u> O is alka                                                 | lline – allow          | basic                                                        |                             |                                |                 |                                        | (1)     |   |
|     | Mg                | O is basi                                                          | c – allow alk          | caline                                                       |                             |                                |                 |                                        | (1)     |   |
|     | Al <sub>2</sub> 0 | O₃ is amp                                                          | hoteric                |                                                              |                             |                                |                 |                                        | (1)     |   |
|     | SiC               | ) <sub>2</sub> , P <sub>4</sub> O <sub>10</sub> ,                  | and SO <sub>2</sub> ar | e <b>all</b> acidic                                          |                             |                                |                 |                                        | (1)     | [ |
| (b) | sod               | two fron<br>lium, pho<br>names                                     | sphorus, su            | lfur and chlori                                              | ne                          |                                |                 |                                        | (1)     | [ |
| (c) | (i)               | melts/fo<br>moves<br>disappe                                       |                        | dissolves                                                    |                             |                                |                 |                                        | (any 3) |   |
|     | (ii)              | or                                                                 | O  	o  NaOl            |                                                              |                             |                                |                 |                                        | (1)     | [ |
| (d) | (i)               | during the                                                         | he extractio           | I fuels – e.g. fi<br>fi<br>n of metals fro<br>purning sulfur | rom car exh<br>om sulfide o | austs <b>or</b><br>res or      |                 |                                        | (1)     |   |
|     | (ii)              | H <sub>2</sub> SO <sub>4</sub><br><b>or</b><br>SO <sub>3</sub> all | low H₂SO₃              | formula requ                                                 | uired                       |                                |                 |                                        | (1)     |   |
|     | (iii)             |                                                                    |                        | .g. damage to<br>damage to<br>deforesta                      | o crops, pla                | nts, marine l                  | life            |                                        |         |   |
|     |                   | or<br>SO <sub>3</sub> is to                                        | avia.                  |                                                              |                             |                                |                 |                                        | (1)     | [ |


(1) [1]

or

it kills bacteria

| Page 3 | Mark Scheme: Teachers' version | Syllabus | Paper |  |
|--------|--------------------------------|----------|-------|--|
|        | GCE AS/A LEVEL – May/June 2012 | 9701     | 21    |  |

(f) (i)



(1)

(ii) 180°

(1) [2]

[Total: 15]

2 (a) 
$$(NH_4)_2SO_4 + 2NaOH \rightarrow 2NH_3 + Na_2SO_4 + 2H_2O$$
 correct products (1) correctly balanced equation (1) [2]

(b) (i) NaOH + HC
$$l \rightarrow \text{NaC}l + \text{H}_2\text{O}$$
 (1)

(ii) 
$$n(HCl) = \frac{31.2}{1000} \times 1.00 = 0.0312 = 0.03$$
 (1)

(iii) 
$$n(NaOH) = \frac{50.0}{1000} \times 2.00 = 0.10$$
 (1)

(iv) 
$$n(NaOH)$$
 used up =  $0.10 - 0.0312 = 0.0688 = 0.07$  (1)

(v) 
$$n[(NH_4)_2SO_4] = \frac{0.0688}{2} = 0.0344 = 0.03$$
 (1)

(vi) mass of 
$$(NH_4)_2SO_4 = 0.0344 \times 132 = 4.5408 = 4.54$$
 (1)

(vii) percentage purity = 
$$\frac{4.5408 \times 100}{5.00}$$
 = 90.816 = 90.8 (1) [7]

[Total: 9]

|   |     | <u> </u>   |                                                                                                                                                   | ,           |                   |     |
|---|-----|------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|-----|
|   |     |            | GCE AS/A LEVEL – May/June 2012                                                                                                                    | 9701        | 21                |     |
| 3 | (a) | the ent    | $O_2(g) \rightarrow CO_2(g)$ thalpy change/energy change/heat change when ole of a compound/ $CO_2$ ed from its elements in their standard states |             | (1)<br>(1)<br>(1) | [3] |
|   | (b) | $\Delta F$ | -f <sup>e</sup> <sub>f</sub> /kJ mol <sup>−1</sup>                                                                                                | O(g)<br>242 |                   |     |
|   |     | -4         | $\mathcal{H}^{e}_{reaction} = -201 + (-242) - (-394)$<br>9 kJ mol <sup>-1</sup><br>Percet sign                                                    |             | (1)<br>(1)<br>(1) |     |
|   |     |            | moval of $CO_2$ from the atmosphere $O_2$ is a greenhouse gas/causes global warming                                                               |             | (1)<br>(1)        | [5] |
|   | (c) |            | part, in each case, the 'effect' must be correctly stated or to gain the explanation mark.                                                        |             |                   |     |
|   |     | yield is   | temperature<br>reduced/equilibrium goes to LHS<br>se forward reaction is exothermic/reverse reaction is endother                                  | rmic        | (1)<br>(1)        |     |
|   |     | yield is   | r pressure<br>s increased or equilibrium goes to RHS<br>moles/molecules on RHS or more moles/molecules on LHS                                     |             | (1)<br>(1)        |     |
|   |     | yield do   | catalyst oes not change d and backward rates speeded up by same amount                                                                            |             | (1)<br>(1)        | [6] |

Mark Scheme: Teachers' version

Page 4

[Total: 14]

Syllabus

Paper

| Page 5 | Mark Scheme: Teachers' version | Syllabus | Paper |  |
|--------|--------------------------------|----------|-------|--|
|        | GCE AS/A LEVEL – May/June 2012 | 9701     | 21    |  |

4 (a) (i)  $C_2H_5OH \rightarrow C_2H_4 + H_2O$ 

(1)

(ii) elimination or dehydration

(1)

(iii) phosphoric acid **or** concentrated sulfuric acid sulfuric acid must be 'concentrated' allow aluminium oxide

(1) [3]

(b)

|                               | with HBr   | with MnO <sub>4</sub> <sup>-</sup> |  |  |
|-------------------------------|------------|------------------------------------|--|--|
| colour at start               | colourless | purple <b>or</b> pink              |  |  |
| colour after reaction         | colourless | colourless or decolourised         |  |  |
| structural formula of product | CH₃CH₂Br   | HOCH₂CH₂OH                         |  |  |

## with hydrogen bromide

from colourless to colourless both colours required

**do not allow** 'clear' instead of colourless  $CH_3CH_2Br$  (1)

with potassium manganate(VII)

**from** purple/pink **to** colourless/decolourised **both** colours required (1) HOCH<sub>2</sub>CH<sub>2</sub>OH (1) [4]

(c) (i)  $C_6H_{10}$  (1)

(ii)

accept answers which have -CH<sub>2</sub>- in the ring

(1)

(iii) electrophilic (1) addition (1)

(iv)

$$CO_2H$$
  $CO_2H$  or

HO<sub>2</sub>C(CH<sub>2</sub>)<sub>4</sub>CO<sub>2</sub>H **or** HO<sub>2</sub>CCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H

accept answers which have –CH<sub>2</sub>– in the ring

(1)

[Total: 12]

[5]

| Page 6 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2012 | 9701     | 21    |

(1) [1]

(1)

(ii) 
$$n(H_2) = \frac{160}{24000} = 6.67 \times 10^{-3} \text{ mol}$$
 (1)

$$n(\text{H atoms}) = 2 \times 6.67 \times 10^{-3} \text{ mol} = 1.33 \times 10^{-2} \text{ mol}$$
 (1)

(iii) 
$$n(\mathbf{X}) = \frac{0.600}{90} = 6.67 \times 10^{-3} \text{ mol}$$

 $n(\mathbf{X}) : n(\text{H atoms}) = 6.67 \times 10^{-3} : 1.33 \times 10^{-2}$ 

since each –OH group produces one H atom there are two –OH groups

(1) [4]

(c) (i)

$$-c \downarrow_{0}^{H} \qquad R-c \downarrow_{0}^{H}$$
 (1)

- (ii) HOCH<sub>2</sub>CH(OH)CHO as the minimum allow the *gem* diols (HO)<sub>2</sub>CHCH<sub>2</sub>CHO **or** CH<sub>3</sub>C(OH)<sub>2</sub>CHO (1)
- (iii)  $HOCH_2CH(OH)CO_2H$  or  $HOCH_2CH(OH)CO_2^-$  (1) [3]
- (d) (i)  $HOCH_2CH(OH)CH_2OH$  (1)
  - (ii)  $HO_2CCOCO_2H$  (1) [2]

[Total: 10]