MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

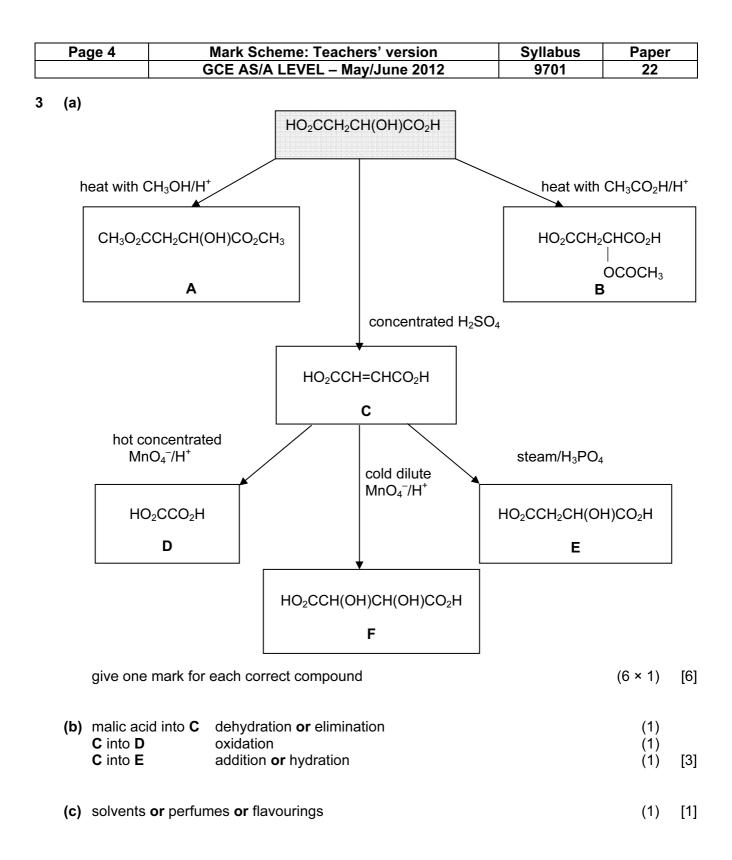
• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		2	Mai	Syllabus	Paper	•				
				GCE	AS/A LEVEL – May/June 20	12	9701	22		
1	(a)	(i)	silico	on/Si or phos	phorus/P			(1)		
		(ii)	sodi	um or sulfur	name required			(1)		
		(iii)	chlo	e solid formed rine gas decc ninium glows		any two (2)				
		(iv)	2A <i>l</i> (equa	s) + $3Cl_2(g)$	→ $Al_2Cl_6(s)$ or → $2AlCl_3(s)$	(1) (1)				
		(v)	vale activ	nce shell of e	ctrons is full/has a complete oc lectrons is full/has a complete is too high or is too high					
	(b)	(i)								
			ele	ment	Does the chloride dissolve or react?		kimate pH of th Ilting solution	e		
			1	Na	dissolve		7			
				Al	react		1 to 4			
				Si	react		1 to 4			
			one	mark for eacl	h correct answer			(6 × 1)		
		(ii)	hydr	olysis				(1)	[7]	
	(c)	(i)			n there is only one lone pair n there are two lone pairs			both (1)		

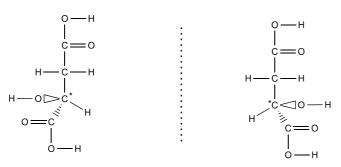
(1) [2]

[Total: 16]


(ii) angle (a) or sulfur - no mark for this

than lone pair-bond pair repulsions

lone pair-lone pair repulsions are stronger


because two lone pairs repel more than one lone pair or

	Page 3	Mark Scheme: Teachers' version	Syllabus	Paper	•
		GCE AS/A LEVEL – May/June 2012	9701	22	
2		$H(I) + {}^{3}/{}_{2}O_{2}(g) \rightarrow CO_{2}(g) + 2H_{2}O(I)$ thalpy change/heat change/heat evolved when		(1)	
	one m	pletely burned or		(1)	
		ed in an excess of air/oxygen		(1)	[3]
	(b) ∆H ^e _{rea} = −12 correc	$t_{tion} = -283 + 2(-286) - (-726)$ kJ mol ⁻¹ t sign		(1) (1) (1)	[3]
	by inc	ses rate easing frequency of collisions or		(1)	
	•	easing concentration of reactants		(1)	
	increa	rature ses rate se more molecules have energy > <i>E</i> _a		(1) (1)	
		st ses rate viding an alternative route of lower <i>E</i> _a		(1) (1)	[6]
				[Total:	: 12]

Mark Scheme: Teachers' version	Syllabus	Paper
GCE AS/A LEVEL – May/June 2012	9701	22

(d) (i)

correct compound (malic acid) shown as a pair of enantiomers in 3D	(1)
chiral carbon (*) atom correctly identified	(1)
structure fully displayed	(1)

(ii)

(e)

(II) Но он о		
give one for each correct skeletal formula	(1 + 1)	
correct <i>cis</i> (or Z) and <i>trans</i> (or E) labels	(1)	[6]
C: H: O = $\frac{37.5}{12}$: $\frac{4.17}{1}$: $\frac{58.3}{16}$		
= 3.13 : 4.17 : 3.64	(1)	
= 1:1.33:1.16	(1)	

empirical formula is $C_6H_8O_7$ (1) [3]

[Total: 19]

Page 6			Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012					Syllabus 9701	Paper 22	,		
				GU	,E A3	ALEVE				9701		
4	(a)		- 4			DOUO						
		reage		R ₂ CF	IOH	RCHU		RCO₂R'	RCOR'			
		NaHC	D_3				\checkmark					
		Na		~	*		\checkmark					
		Cr ₂ O ₇ ²⁻	/H⁺	~	~	\checkmark						
	give one mark for each correct tick										(5 × 1)	[5]
	(b) (i	i) alco not				ol or –Ol	Н				(1)	
	(ii	i) n(H ₂) =	80 24000	- = 3	8.3 × 10 ⁻³	³ mol				(1)	
		n(H atoms) = $2 \times 3.3 \times 10^{-3}$ mol = 6.6×10^{-3} mol						l		(1)		
	(iii	(iii) $n(\mathbf{G}) = \frac{0.30}{90} = 3.3 \times 10^{-3} \text{ mol}$										
				l atom	s) =	3.3 × 10	^{–3} : 6.6 × ′	10 ⁻³				
		= 1 : 2 so each –OH group produces one H atom								(1)	[4]	
	(c) (i	R.	c— o)œ	— 0						
		R		or		or		and 'ke	tone'		(1)	
	(ii					H as the I₃COCH	minimum (OH) ₂	l			(1)	[2]
	(d) (i	i) His	HO ₂ 0	2002	O₂H a	is the mii	nimum				(1)	
	(ii	i) Jis	нос	H₂CH(OH)C	H ₂ OH as	s the minir	num			(1)	[2]
											[Total:	13]