MARK SCHEME for the May/June 2013 series

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2013	9701	21	
1	(a) (i)	NaC	$H + HCl \rightarrow NaCl + H_2O$		(1)	
		(NH	$_{\rm a})_2 \rm SO_4 + 2\rm NaOH \rightarrow 2\rm NH_3 + \rm Na_2\rm SO_4 + 2\rm H_2O$		(1)	
		allov	v ionic equations in each case			
	(ii)	n(Na	$aOH) = n(HCl) = \frac{39.2 \times 2.00}{1000} = 0.0784$		(1)	
	(iii)	<i>n</i> (Na	$aOH) = n(HCl) = \frac{29.5 \times 2.00}{1000} = 0.059$		(1)	
	(iv)	<i>n</i> (Na	aOH) = 0.0784 – 0.059 = 0.0194		(1)	
	(v)	<i>n</i> [(N	$H_4)_2 SO_4] = \frac{0.0194}{2} = 9.7 \times 10^{-3}$		(1)	
	(vi)	mas	s of (NH ₄) ₂ SO ₄ = 9.7 × 10 ⁻³ × 132.1 = 1.2814 g		(1)	
	(vii)	% of	$(NH_4)_2SO_4 = \frac{1.2814 \times 100}{2.96} = 43.30405405 = 43.3$			
		give give	one mark for the correct expression one mark for answer given as 43.3 – i.e. to 3 sig. fig. v ecf where appropriate		(1) (1)	[9]
	éxc	cessiv	in the river causes e growth of aquatic plants/algae or algal bloom ints and algae die O_2 is used up or fish or aquatic life die	9	(1) (1)	[2]
	(c) manufacture of HNO ₃ or explosives or nylon or as a cleaning agent or as a refrigerant					
		t dete			(1)	[1]
					[Total	:12]

	Page 3		Mark Scheme		Syllabus	Paper	
		GCE AS/A	LEVEL – May/Ju	ne 2013	9701	21	
2	(a) K _P = -	$\frac{p(NO)^4 p(H_2O)^6}{p(NH_3)^4 p(O_2)^5}$				(1)	
		pheres or Pa or kPa ecf on incorrect powers	3			(1)	[2]
	yi	creasing temperature eld of NO is decreased rward reaction is exoth	or reaction move	s to LHS		(1) (1)	
	yi m	ecreasing the pressu eld of NO is increased ore moles/molecules o wer moles/molecules o	or reaction moves f gas on RHS or	to RHS		(1) (1)	[4]
	(c) let ∆H	f^{e} for NO be <i>y</i> kJ mol ⁻¹					
	4	NH ₃ (g) + 5O ₂ (g)	\rightleftharpoons 4NO(g)	+ 6H ₂ O(g)			
	ΔH_{f}^{\bullet} 4	× (–46.0)	4 <i>y</i>	6 × (–242)		(1)	
	ΔH^{e}_{rea}	$= 4y + [6 \times (-24)]$ = $4y - 1452 + 1$	2)] – [4 × (–46.0)] 84			(1)	
	4y = -	_{stion} is –906 kJmol ^{−1} so 906 + 1452 – 184 = 36 se y = ∆H _f ^e for NO = +9				(1)	
		is required				(1)	[4]
						[Total:	10]

Page 4		Mark SchemeSyllabusGCE AS/A LEVEL – May/June 20139701		
3 (a) pe	nalise	(-1) for names of elements	21]
(i)		or K or Li	(1)	
		C or N or P	(1)	
(iii)			(1)	
(iv)			(1)	
	Cl		(1)	
	Al o	r Si	(1)	[6]
(b) (i)	Al₂C	0₃ or SiO₂	(1)	
(ii)	Na ₂ 0	C	(1)	
(iii)	P_2O_2	$_3$ or P_4O_6 and P_2O_5 or P_4O_{10} or SO_2 and SO_3	(1+1)	
(iv)	Al₂C	D ₃	(1)	[5]
(c) (i)	0 C 0 F 0 C 3 bo 2 lor	× o o	(1) (1)	
(ii)	eith	er		
	refe	rring to van der Waals' forces in BrF_3		
	inter	der Waals' or molecular forces are greater/stronger ause there are more electrons in BrF ₃ than in C <i>T</i> F ₃	(1) (1)	
	OR	referring to permanent dipoles		
		nanent dipole or intermolecular forces are stronger/greater in BrF ₃ ause BrF ₃ has a larger permanent dipole than CIF_3	(1)	
		because difference in electronegativity is larger between Br and F than veen C <i>l</i> and F	(1)	
	part	(ii) has a maximum of 2 marks	(max 2)	[4]
			[Total:	: 15]

Page 5	Page 5 Mark Scheme		Paper
	GCE AS/A LEVEL – May/June 2013		21

4 Types of reaction used must come from the list in the question.

organic reaction	type of reaction		reagent(s)	
$\rm CH_3\rm CH_2\rm CH_2\rm CH_2\rm Br \rightarrow$	nucleophilic	(1)	NH ₃	(1)
CH ₃ CH ₂ CH ₂ CH ₂ NH ₂	substitution	(1)		
$CH_3CH_2CH_2CH_2OH \rightarrow$	free radical	(1)	Br ₂	
BrCH ₂ CH ₂ CH ₂ CH ₂ OH	substitution	(1)	or Br ₂ in an organic solvent	(1)
			not Br ₂ (aq)	
$CH_3COCH_3 \rightarrow$	nucleophilic	(1)	HCN	
CH ₃ C(OH)(CN)CH ₃	addition	(1)	or HCN and CN⁻	
		()	or NaCN/KCN + H⁺	(1)
CH ₃ CH(OH)CH ₂ CH ₃	elimination	(1)	conc. H ₂ SO ₄	
\rightarrow CH ₃ CH=CHCH ₃	not dehydration		or P_4O_{10} or Al_2O_3 or H_3PO_4	(1)

[Total: 11]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	21

5 (a)

reaction	reagent	product
A	Br ₂ in an inert organic solvent	CH₃CHBrCHBrCHO
В	PC <i>l</i> ₃	NO REACTION
С	H_2 and Ni catalyst	CH3CH2CH2CH2OH
D	NaBH₄	CH₃CH=CHCH₂OH
E	K₂Cr₂O ₇ /H⁺	CH₃CH=CHCO₂H

one mark for each correct answer

correctly displayed -CHO group (1) [3]

[5]

Page 7	,	Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2013	9701	21	
(c)		~_0		(1)	[1]
(d) (i)	CH₃(CH(OH)CH(OH)CO ₂ H		(1)	
(ii)		CO₂H CCO₂H		(1) (1)	[3]
allo	w ecf	on candidate's answer to E in (a)			
				[Total:	12]

© Cambridge International Examinations 2013