

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME							
CENTRE NUMBER				NDIDATE MBER			_

9395074405

CHEMISTRY 9701/23

Paper 2 Structured Questions AS Core

May/June 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
1				
2				
3				
4				
5				
Total				

This document consists of 11 printed pages and 1 blank page.

Answer **all** the questions in the spaces provided.

For Examiner's Use

[3]

1	Carbon disulfide, CS_2 , is a volatile, flammable liquid which is produced in small quantitie volcanoes.								
	(a)	The	e sequence of atoms in the CS ₂ molecule is sulfur to carbon to sulfur.						
		(i)	Draw a 'dot-and-cross' diagram of the carbon disulfide molecule. Show outer electrons only.						
		(ii)	Suggest the shape of the molecule and state the bond angle.						
			shape						
			bond angle	[3]					
	(b)	Car	rbon disulfide is readily combusted to give CO ₂ and SO ₂ .						
		(i)	Construct a balanced equation for the complete combustion of CS ₂ .						
		(ii)	Define the term standard enthalpy change of combustion, ΔH_c^e .						

For

(c)		culate the standard enthalpy change of formation of ${\rm CS_2}$ from the followde a sign in your answer.	owing data.	For Examiner's Use
	star	ndard enthalpy change of combustion of $CS_2 = -1110 \mathrm{kJ}\mathrm{mol}^{-1}$		
	star	ndard enthalpy change of formation of CO ₂ = -395 kJ mol ⁻¹		
	star	ndard enthalpy change of formation of SO ₂ = -298 kJ mol ⁻¹		
			[3]	
(d)		bon disulfide reacts with nitrogen monoxide, NO, in a 1:2 molar ratio. ellow solid and two colourless gases are produced.		
	(i)	Construct a balanced equation for the reaction.		
	/ii\	What is the change in the evidetion number of cultur in this recetion?		
	(ii)	What is the change in the oxidation number of sulfur in this reaction? from		
		ιοιι	[3]	
			[Total: 12]	

[Turn over © UCLES 2013 9701/23/M/J/13

Methanol, CH₃OH, can be produced industrially by reacting carbon monoxide, CO, with hydrogen, H₂. $CO(g) \ + \ 2H_2(g) \ \Longleftrightarrow \ CH_3OH(g) \qquad \Delta H = -91 \, kJ \, mol^{-1}$ The process is carried out at $4 \times 10^3 \, kPa$ (40 atmospheres) and 1150 K.

For
Examiner's
Use

[4]

1116	e pro	cess is carried out at 4 × 10° kPa (40 atmospheres) and 1150 K.
(a)	(i)	State Le Chatelier's Principle.
		[2]
	(ii)	From your understanding of Le Chatelier's Principle, state the conditions of temperature and pressure that could be used in order to produce an increased yield of methanol in this process. In each case, explain why the yield would increase.
		temperature
		explanation
		pressure
		explanation

(b) The carbon monoxide for use in the production of methanol may be formed by reacting carbon dioxide with hydrogen.

For Examiner's Use

$$CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$$

$$K_{\rm c} = 1.44 \text{ at } 1200 \text{ K}$$

A mixture containing 0.70 mol of CO_2 , 0.70 mol of H_2 , 0.30 mol of CO and 0.30 mol of H_2O was placed in a 1 dm³ flask and allowed to come to equilibrium at 1200 K.

Calculate the amount, in moles, of each substance present in the equilibrium mixture at 1200 K.

$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$

initial 0.70 moles

0.7

0.70

0.30

0.30

[4]

[Total: 10]

3

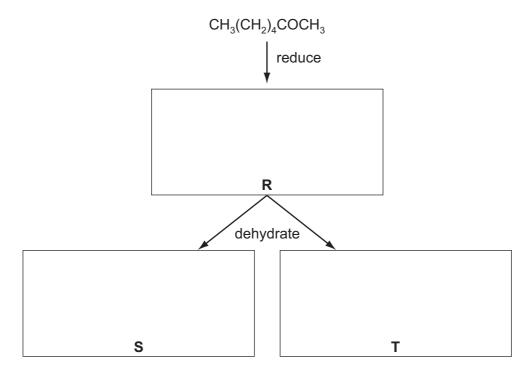
This question refers to the elements in the section of the Periodic Table shown below. Н He F Li Be В C Ν 0 Ne Si Ρ S Na Mg AlClAr K Ca transition elements Ga Ge As Se Br Kr (a) From this list of elements, identify in each case one element that has the property described. Give the **symbol** of the element. (i) An element that has molecules which consist of single atoms. (ii) An element that has a molecule which contains exactly four atoms. (iii) The element that is a liquid at room temperature and pressure. (iv) The element in Period 3 (Na to Ar) that has the largest atomic radius. (v) The element in Period 3 (Na to Ar) that has the highest melting point. (vi) The element in Period 3 (Na to Ar) that forms the largest anion. (vii) An element that reacts with water to give a solution that can behave as an oxidising agent. [7] For Examiner's Use

For Examiner's Use

(b) The formulae and melting points of some of the oxides of the elements in Period 3, Na to C*l*, are given in the table.

formula of oxide	Na ₂ O	MgO	Al_2O_3	SiO ₂	P ₄ O ₆	SO ₂	Cl ₂ O ₇
m.p./°C	1132	2830	2054	1710	24	-73	-92

(i)	Give the fo	ormulae of tw	o of thes	e oxides	that hav	e simple	molecular s	tructur	es.
		and							
(ii)		ormula of on- t for a long til		e oxides	that will	give no r	eaction with	n wate	r wher
(iii)		ormula of the		ormed w	hen MgC) is react	ed with ${ m SO}_2$	2.	
			•••						[4]
(c) The	e meltina po	ints of the el	ements S	i to C <i>l</i> ar	e aiven i	n the tabl	e.		
(0)	, moning po		J		- g.vo	T 1110 tab	1		
		element	Si	Р	S	Cl			
		m.p./°C	1414	44	115	-102			
(i)	elements.	y the melting	, point of s	very	much gr	eater tha	n triose of tr		ee
(ii)	Suggest vorder S > F	why the medical controls which which which medical controls are the medical control controls are the medical control control control controls are the medical control control control controls are the medical control co	elting po	ints of	the oth	er three	elements	are	in the
				• • • • • • • • • • • • • • • • • • • •		•••••			
								•••••	
									[4]
								ΙΤΩ	tal: 1E
								[10	tal: 15


[5]

4 Compound **Q**, heptan-2-one, is found in some blue cheeses.

CH₃(CH₂)₄COCH₃

compound Q

- (a) Compound Q may be reduced to R.Compound R may be dehydrated to give two different products, S and T.
 - (i) In the boxes below, draw the structural formulae of R, S, and T.

(ii)	State the reagents that would be used for each of these reactions in a school or college laboratory.
	reduction
	dehydration

For Examiner's Use

(b)	In the boxes below, write the structural formula of the organic compound formed when
	Q is reacted separately with each reagent under suitable conditions.
	If you think no reaction occurs, write 'NO REACTION' in the box.

Tollens' reagent	
HCN	
K ₂ Cr ₂ O ₇ /H ⁺	

[3]

(c) The first stage of cheese making is to produce 2-hydroxypropanoic acid (lactic acid) from milk.

CH₃CH(OH)CO₂H

lactic acid

Other than the use of a pH indicator, what reagent could you use to confirm the presence of some lactic acid in a sample of heptan-2-one? State what observation you would make.

reagent		 	 	
observat	ion			[2]

[Total: 10]

5

Compounds containing the allyl group, CH_2 = $CHCH_2$ –, have pungent smells and are found in onions and garlic. Allyl alcohol, CH_2 = $CHCH_2OH$, is a colourless liquid which is soluble in water.					
(a) Allyl alcohol behaves as a primary alcohol and as an alkene.					
		Give the structural formula of the organic compound formed when allyl alcohol is reacted separately with each of the following reagents.			
	(i)	acidified potassium dichromate(VI), heating under reflux			
	(ii)	bromine in an inert organic solvent			
	(iii)	cold, dilute, acidified potassium manganate(VII)			
	()				
	(iv)	hot, concentrated, acidified potassium manganate(VII)			
			[5]		
	(b) Ally	l alcohol undergoes the following reactions.			
	(i)	When reacted with concentrated HC l at 100 °C, CH $_2$ =CHCH $_2$ C l is formed.			
		State as fully as you can what type of reaction this is.			
	(ii)	When reacted with MnO ₂ at room temperature, CH ₂ =CHCHO is formed.			
	(,	What <i>type of reaction</i> is this?			
			[2]		

© UCLES 2013 9701/23/M/J/13

For Examiner's Use

	For Examiner's Use
 [5]	
st in	

- () Allyl alcohol c	an be converted	into pro	nanal in '	two stens
٨	_	, , any i andonion o	an bo convolted	mico pro	panan	tito otopo.

		$CH_2 = CHCH_2OH \xrightarrow{\text{step II}} CH_3CH_2CH_2OH \xrightarrow{\text{step II}} CH_3CH_2CHO$			
	(i)	What reagents and conditions would be used for each step?			
		step I			
		reagent(s)			
		condition(s)			
		ston II			
		step II			
		reagent(s)			
		condition(s)			
	(ii)	Allyl alcohol and propanal are isomers.			
		What form of isomerism do they display?			
		[5]			
(d)) Allyl alcohol may also be converted into propanal by using a ruthenium(IV) catalyst in water.				
		ruthenium(IV) catalyst			
	CH₂=CHCH₂OH → CH₃CH₂CHO				
	Suggest what is unusual about this single step reaction.				
		[1]			
		[Total: 13]			

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.