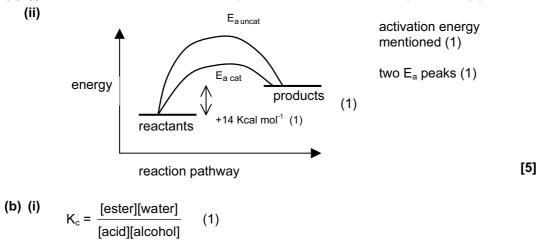
CAMBRIDGE INTERNATIONAL EXAMINATIONS

NOVEMBER 2001

ADVANCED SUBSIDIARY LEVEL

MARK SCHEME

MAXIMUM MARK: 60


SYLLABUS/COMPONENT: 8701/2

CHEMISTRY (Structured Questions)

UNIVERSITY of CAMBRIDGE Local Examinations Syndicate

Page 1 of 3		Mark Scheme							Syllabus	Paper
			AS	Level	Examina	ations -	- Jur	ne 2001	8701	2
Question Number	Mark	Scheme	e Det	ails						Part Mark
1 (a)	Mg Mg ²⁺ O O ²⁻	1s ²		2s ²	2p ⁴	3s ²	} }	(1) (1)		[2]
(b) (i)	• •	0 • 0	•	0 • 0		• is M O is C cations) ²⁻	regular (1) rounded by anio	ons etc. (1)	[2]
(ii)	insula high r		ior foi	ns unat	ole to mo tween do		arge	d ions are stron	ıg	
	condu	ucts whe	en mo	lten				(1) for	each	[2]
(iii)					insulator	s, spark	c plu	. ,	any two	[1]
(iii) Furnace linings, electrical insulators, spark plugs, ceramics any two (c) (i) CO (1) and water vapour (1) [or from equations] (ii) CaO + H ₂ O \rightarrow Ca(OH) ₂ (1)						,				
	Ca(O	H) ₂ + CC	$D_2 \rightarrow$	CaCC	$D_3 + H_2O$	<u>OR</u> Ca	aO +	$CO_2 \rightarrow CaCC$	O ₃ (1) max 3	[3]
									[Total:	10]
2 (a) (i)	Rate	of forwa	rd rea	action is	s equal to	o rate of	bac	kward or equiva	alent. (1)	

(ii) Since same number of terms in expression, top & bottom

(c) (i) ethanol = ethanoic acid = 0.43 (1)
ethyl ethanoate = 0.57 (1)
water = 1.57 (1)
(ii)
$$K_c = \frac{0.57 \times 1.57}{0.43 \times 0.43} = 4.84$$
 (1) [4]

[marked consequentially from (i)]

[Total: 11]

Page 2 of 3	Mark Scheme	Syllabus	Paper			
	IGCSE Examinations – November 2001	8701	2			
(b) (c) (i) (ii) (iii) (iv) (d) (i) (ii)	red / brown liquid / vapour (1) Stronger van der Waals' forces between molecules (1) since bromine is a <u>bigger</u> molecule / more electrons than chlorine and has more induced dipoles on its surface (1) M $2P + 5Cl_2 \rightarrow 2PCl_5$ (1) $PCl_5 + 4H_2O \rightarrow H_3PO_4 + 5HCl$ (1) $NaCl + AgNO_3 \rightarrow AgCl \downarrow + NaNO_3$ <u>OR</u> $Cl^-(aq) + Ag^+(aq) \rightarrow AgCl_{(s)}$ (1) $AgCl + 2NH_3 \rightarrow Ag(NH_3)_2^+(aq) + Cl$ <u>OR</u> to $Ag(NH_3)_2Cl$ (1) $CH_2=CH_2 + Br_2 \rightarrow CH_2BrCH_2Br$ (1) Electrophilic addition (1) Electron-rich double bond attracts Br_2 which is then polarised	Max (2)	[1] [2] [4]			
	$\begin{array}{c} CH_2 \\ II & \longrightarrow \\ Br & {}^{\delta_+} - Br & {}^{\delta} (1) \end{array} \qquad \text{intermediate } CH_2CH_2 \\ CH_2 & (1) \end{array}$	₂ Br⁺ (1)				
	Final addition of Br					
		[Total:	12]			
4 (a)	$ \begin{array}{ccc} N_{2} & zero \\ NH_{4}^{+} & -3 \end{array} \right\} (1) \\ NO_{3}^{-} & +5 \end{array} $	} (1)	[2]			
(ii)	The triple bond (high energy) needs to be broken (1) gives NH_4^+ directly / gives soluble N to soil (1) 6.3 x 10 ⁻⁹ mol dm ⁻³ (1)		[2]			
(iii) (d)	Since H ⁺ is a product, and this is removed (1) lime / a base / ammonia (1) Waterlogged soils will contain very little oxygen / will discourage n bacteria (1)	itrifying	[3] [1]			
(e) (i)	H ⊕ charge (1) x x H × N ● H ● x ● X H	1				
(ii)	tetrahedral, 109 or $109\frac{1}{2}^{\circ}$ (1)		[2]			
		[Total:	max 10]			
(ii)	$CH_3(CH_2)_9CHBrCH_2Br$ (1) $CH_3(CH_2)_9CHBrCH_3$ (1) $CH_3(CH_2)_9CO_2H$ (1)					

(iv) $CH_3(CH_2)_9CH(OH)CH_3$ (1)

[4]

Page 3 of 3		Syllabus	Paper	
Fage 5 01 5	AS Level E	8701	2	
(b) (i) o (ii)	ptical isomerism (1) CH ₃ (CH ₂) ₉ C C C C H 3 Br	CH ₃ (CH ₂) ₉ H C GH3 CH3 CH3		[3]
(c) C	$H_3(CH_2)_8$ H C = C H H C trans	$CH_3(CH_2)_8$ C=C H Cis	CH ₃	
	(1) each		[2]
			[Total:	9]
	only alcohol lot H⁺/Cr₂O7 ²⁻ or H⁺/MnO	ester (1)	(1) mell of	[2]
<u>- 11</u>		4		
В	3 Only ketone	DNP reagent gives red precipita does not give Tollens or Fehling <u>OR</u> $H^+/Cr_2O_7^{2-}$ tests (1)	. ,	[2]
С	Calkene and aldehyde	decolourises Br ₂ (water) (1) red/brown ppt with Benedicts or <u>OR</u> Ag mirror – Tollens (1) DNP test (1) if not used elsewhe	-	[2]
D	aldehyde only	DNP gives red ppt (1) Benedicts/Tollens/Fehlings posit (as	tive (1) s C)	[2]
			[Total:	8]