	Centre Number	Number
Candidate Name		

CAMBRIDGE INTERNATIONAL EXAMINATIONS

General Certificate of Education Advanced Subsidiary Level

CHEMISTRY 8701/3

PAPER 3 Practical Test

OCTOBER/NOVEMBER SESSION 2001

1 hour 15 minutes

Candidates answer on the question paper. Additional materials: As listed in Instructions to Supervisors

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

You may use a calculator.

You are advised to show all working in calculations.

Use of a Data Booklet is unnecessary.

Qualitative analysis notes are printed on pages 6 and 7.

FOR EXAMINER'S USE	
1	
2	
TOTAL	

1 FC 1 is a solution containing 16.75 g dm⁻³ of hydrated sodium carbonate, Na₂CO₃.xH₂O. **FC 2** is 0.125 mol dm⁻³ hydrochloric acid, HC*l*.

You are required to titrate the sodium carbonate solution with the acid and use your results to determine the mass of water in the hydrated sodium carbonate.

(a) Pipette 25.0 cm³ of **FC 1** into a conical flask and add a few drops of the indicator provided.

Run **FC 2** from the burette until the appropriate colour change for the indicator you are using is achieved. This is the end-point of the titration. Record your burette readings in Table 1.1.

Repeat the titration as many times as you think necessary to obtain accurate results.

Make certain that the recorded results show the precision of your practical work.

Table 1.1 Titration of FC 1 with FC 2

Final burette reading / cm³

Initial burette reading / cm³

Volume of FC 2 used / cm³

[10]

Summary

25.0 cm³ of **FC 1** reacted with cm³ of **FC 2**.

Show which results you used to obtain this volume of **FC 2** by placing a tick (\checkmark) under the readings in Table 1.1.

You are advised to show full working in all parts of the calculations

(b) Calculate how many moles of the acid were run from the burette into the conical flask during the titration of FC 1 with FC 2.

[1]

(c) Calculate the number of moles of anhydrous sodium carbonate, Na₂CO₃, in 25.0 cm³ of

$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$$

[1]

(d) Calculate the concentration, in mol dm $^{-3}$, of sodium carbonate, Na $_2$ CO $_3$, in FC 1.

[1]

(e) Calculate the mass of anhydrous sodium carbonate present in 1.00 dm³ of FC 1. $[A_r: Na, 23.0; C, 12.0; O, 16.0.]$

[1]

(f) Calculate the mass of water present in the hydrated sodium carbonate.

[1]

[Total: 15]

2 The solution **FC 3** contains **two cations** and **one anion** from the following list: (A l^{3+} , NH $_4^+$, Ba $^{2+}$, Ca $^{2+}$, Cr $^{3+}$, Cu $^{2+}$, Fe $^{2+}$, Fe $^{3+}$, Pb $^{2+}$, Mg $^{2+}$, Mn $^{2+}$, Zn $^{2+}$; CO $_3^{2-}$, CrO $_4^{2-}$, Cl $^-$, Br $^-$, I $^-$, NO $_3^-$, NO $_2^-$, SO $_4^{2-}$, SO $_3^{2-}$).

In all tests, the reagent should be added gradually until no further change is observed, with shaking after each addition.

Record your observations and the deductions you make from them in the spaces provided.

Your answers should include

- details of colour changes and precipitates formed,
- the names of gases evolved and details of the test used to identify each one.

You should indicate clearly at what stage in a test a change occurs, writing any deductions you make alongside the observations on which they are based.

Marks are **not** given for chemical equations.

No additional or confirmatory tests for ions present should be attempted.

Candidates are reminded that definite deductions may be made from tests where there appears to be no reaction.

	Test	Observations [5]	Deductions [4]
	To 2 cm depth of FC 3 in a test-tube, add dilute nitric acid.		
	To 2 cm depth of FC 3 in a boiling-tube, add aqueous sodium hydroxide. Warm the solution and retain for test (c).		
` ,	Cool the solution remaining from test (b) , add aluminium foil and cautiously warm again.		

Test		Observations	Deductions
(d) To 2 cm depth FC 3 in a test- add aqueous potassium iod	tube,		
(e) To 2 cm depth FC 3 in a boiling tube, add dilute aqueous amountil in excess. Filter the mixture and then add enitric acid drop drop to neutral the solution are then in excess.	ng- re nonia ure dilute o by lise nd		

Summary

The cations present in FC 3 are and	
The anion in FC 3 is	[1]

[Total : 10]

QUALITATIVE ANALYSIS NOTES

[Key: ppt. = precipitate.]

1 Reactions of aqueous cations

ion	reaction with		
1011	NaOH(aq)	NH ₃ (aq)	
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
ammonium, NH ₄ +(aq)	ammonia produced on heating		
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.	
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.	
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess	
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution	
iron(II), Fe ²⁺ (aq)	green ppt. insoluble in excess	green ppt. insoluble in excess	
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess	
lead(II), Pb ²⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess	
manganese(II), Mn ²⁺ (aq)	off-white ppt. insoluble in excess	off-white ppt. insoluble in excess	
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess	

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chromate(VI) CrO ₄ ²⁻ (aq)	yellow solution turns orange with H ⁺ (aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride, Cl ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq)); gives yellow ppt. with Pb ²⁺ (aq)
nitrate, NO ₃ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	${ m NH_3}$ liberated on heating with ${ m OH^-(aq)}$ and ${ m A}l$ foil, NO liberated by dilute acids (colourless ${ m NO} ightarrow { m (pale)}$ brown ${ m NO_2}$ in air)
sulphate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) or with Pb ²⁺ (aq) (insoluble in excess dilute strong acid)
sulphite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acid)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint
sulphur dioxide, SO ₂	turns potassium dichromate(VI) (aq) from orange to green

BLANK PAGE