UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the November 2004 question paper

9701 CHEMISTRY

9701/06

Paper 6 (Options), maximum raw mark 40

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 9701 (Chemistry) in the November 2004 examination.

	maximum	minimum mark required for grade:			
	mark available	А	В	Е	
Component 6	40	27	24	13	

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

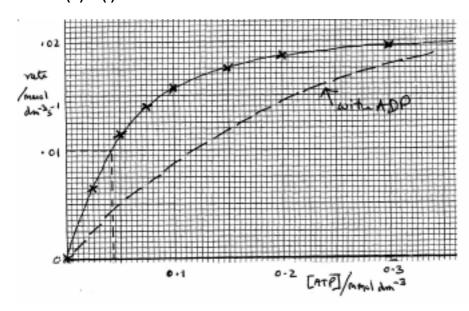
GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9701/06

CHEMISTRY Paper 6 (Options)



Page 1	Mark Scheme		Paper
	A LEVEL – NOVEMBER 2004	9701	6

Biochemistry

1. (a) ATP + $H_2O \rightarrow ADP + P$ [1]

(b) (i)

Axes labelled (1); points and plots (1); zero point (1)

(ii)
$$K_{\rm m} = 0.042 \pm 0.003$$
 (1)

(iii)
$$mmol dm^{-3} (1)$$
 [5]

(c) Any three of:

Line on graph must approach the same
$$V_{max}$$
 (1)

[4]

	Page 2		Mark Scheme Syllabus	Paper
			A LEVEL – NOVEMBER 2004 9701	6
2.	(a)	(i)	$C_6H_{12}O_6$ + $6O_2$ \rightarrow $6CO_2$ + $6H_2O$	(1)
		(ii)	$C_{18}H_{36}O_2 + 16O_2 \rightarrow 18CO_2 + 18H_2O$	(1)
				[2]
	(b)	(i)	TWO valid points e.g.	
			Units of CHOH in glucose but CH_2 in stearic acid More O_2 required in stearic acid/more CO_2 produced More CH bonds to break	(1) (1) (1)
				[max 2]
		(ii)	Two M _r values	(1)
			Glucose $180 \times 17 = 3,060 \text{ kJ mol}^{-1}$ Stearic acid $284 \times 39 = 11,076 \text{ kJ mol}^{-1}$	(1) (1)
				[3]
	(c)		Converted into cellulose in plants for growth Makes starch in plants for storage	(1) (1)
			Converted into glycogen in animals for storage	(1)
Envi	ronme	ntal	Chemistry	[3]
3.	(a)	(i)	<u>Stratosphere</u>	
			Ozone in the stratosphere absorbs/reduces uv radiation Formed by photochemical reaction of oxygen radicals with O ₂ Removed in the presence of chlorine radicals from CFCs	(1) (1) (1)
				[3]
		(ii)	<u>Troposphere</u>	
			Formed by reaction of oxygen and nitrogen oxides (from vehicles) Irritates lungs/mucous membrane/destroys plant tissues Contributes to the 'greenhouse effect'/global warming	(1) (1) (1)
			Contributes to the formation of 'photochemical smog'	(1)
				[max 3]

Mark Scheme

Paper

Syllabus

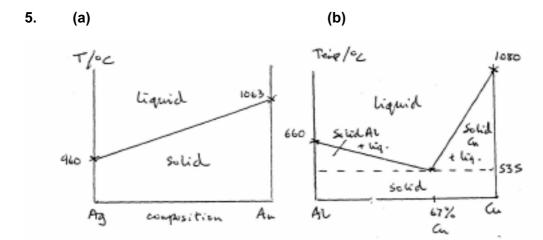
Page 2

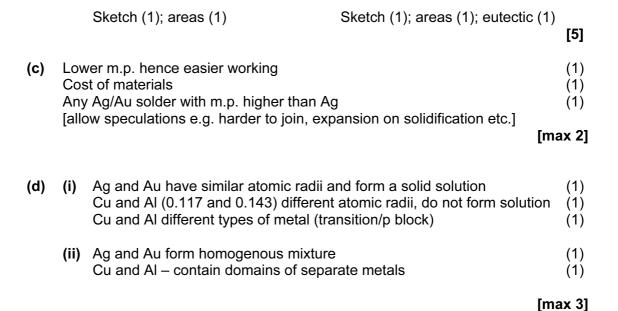
		ALLIE HOVEMBER 2007	
	/l= \	Lagrahoum annings madusa IIO (4) CO amissians (4)	0 (4)
	(b)	Lean burn engines reduce HC (1) CO emissions (1)	2 x (1)
		Increase the formation of NO _x	(1)
		In catalytic converters the following occur: (Allow any two)	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1) (1) (1)
		$2NO_x + 2xCO \rightarrow N_2 + 2xCO_2$	
			[max 4]
4.	(a)	(i) Aluminium salts/sulphate NOT chloride	(1)
		(ii) Chlorine (allow ozone)	(1)
		(iii) Chlorinated organic materials/organic acids	(1)
		(iv) Nitrates - fertilisers Phosphates - detergents	(1) (1) [5]
	(b)	<u>Landfill</u>	
	(6)		(4)
		Large sites needed/these are unusable/not biodegradable Needs regular covering with soil	(1) (1)
		Gases, such as CH ₄ , need to be vented Leachwater may contaminate groundwater	(1) (1)
		Todolimato: may comaminate groundinate.	
			[max 3]
		Incineration	
		Produces CO ₂ - greenhouse gas Other toxic gases (SO ₂ , NO ₂ , HC <i>l</i>) must be removed from exhaust gas Plastics can produce dioxins if the temperature is not controlled	(1) (1) (1)
			[any 2]
			[5]

Mark Scheme

A LEVEL - NOVEMBER 2004

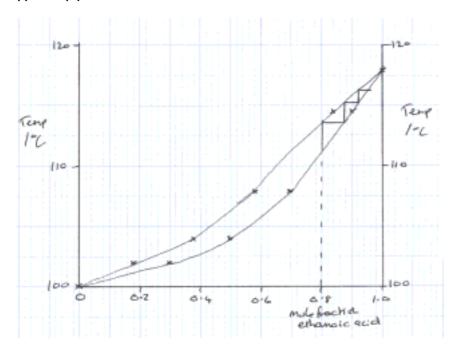
Page 3


Syllabus 9701

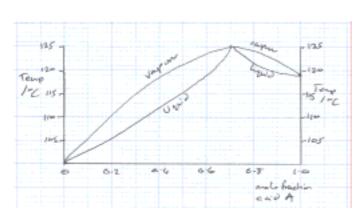

Paper

6

Page 4	4 Mark Scheme		Paper
	A LEVEL – NOVEMBER 2004	9701	6


Phase Equilibria

Page 5	Page 5 Mark Scheme S		Paper
	A LEVEL – NOVEMBER 2004	9701	6


6. (a) (i) and (ii)

Axes (1); plot (1); liquid/vapour labels (1)

Construction lines (horizontal and vertical) (1)

 (2×1)

(iii)
$$0.90 \rightarrow \text{pure A}$$
 } 0.70 $\rightarrow \text{azeotrope}$ } 3 correct scores (2), 2 correct scores (1) } 0.50 $\rightarrow \text{pure water}$ }

[5]

Page 6	Mark Scheme	Syllabus	Paper
	A LEVEL – NOVEMBER 2004	9701	6

Spectroscopy

7. CH₃NO₂ CH₂=CH₂ (2×1) [2] (a) (contains π electrons or lone pairs scores (1)) **(b)** $0.48 \times 100 = 5.97$ - hence 6 carbons (1) **E** is C₆H₁₂ (1) [2] (c) Pink form contains different chromophores/degree of delocalisation/ conjugation (1) Greater delocalisation in alkaline/pink form (1) Energy levels are closer together shifting absorption to visible range (1) [3] (d) -OH at ~3000 cm⁻¹ (1) $C = O at \sim 1720 cm^{-1}$ (1) (allow C-O at 1080 cm⁻¹ or 1240 cm⁻¹) F is CH₃CH₂CO₂H (1) [3] 8. Each proton's magnetic moment aligns with or against external field (1) This gives two energy states (1) For a given proton, it 'sees' adjacent protons energy states: H_a protons see 2 H_b protons giving 1:2:1 triplet (1) H_b protons see 3 H_a protons giving 1:3:3:1 quartet (1) H_c proton has no adjacent protons (1) (1) Singlet [max 5] (b) Low energy - does not damage tissues Non-invasive - no tissue sample needed Can be 'tuned' to particular protons/types of tissue [any 2] (i) Cu²⁺ has a vacant d-orbital (c) (1) Allows promotion of electrons using energy in visible region (1) (ii) Anhydrous Cu²⁺ has no ligands, hence d-orbitals are degenerate (1) Hydrating the ion attaches water ligands splitting the orbitals (1) [any 3]

Page 7	Mark Scheme	Syllabus	Paper
	A LEVEL – NOVEMBER 2004	9701	6

Transition Elements

9. (a) Cis-trans

2 x (1)

Optical

(1) **[3]**

[2]

(b) (i)
$$[Co(H_2O)_6]^{2^+}$$
 == $[Co(H_2O)_4]^{2^+}$ + $2H_2O$ (1) pink blue (1)

This reaction is endothermic (1)

(ii)
$$[Co(H_2O)_6]^{2^+} + 4Cl^- == [CoCl_4]^{2^-} + 6H_2O$$
 (1) blue (1)

(iii)
$$Co(OH)_2 + 2OH^- == [Co(OH)_4]^{2-}$$

pink (1) blue (1)

Reversibility mention anywhere (1)

[max 7]

			A LEVEL – NOVEMBER 2004	9701	6
10.	(a)	(i)	Cathodic areas : O_2 + $2H_2O$ + $4e^- \rightarrow 4OH^-$ Anodic areas : $2Fe \rightarrow 2Fe^{2^+} + 4e^-$ $Fe^{2^+} + 2OH^- \rightarrow Fe(OH)_2(s)$ or in words $2 Fe(OH)_2(s) + \frac{1}{2}O_2 + H_2O \rightarrow 2Fe(OH)_3$ [or $Fe_2O_3 \times H_2O_3 \times$	- •	(1) (1) (1) (1)
					[max 4]
		(ii)	Galvanising (zinc) - electrochemical Painting - excludes air/water Plating - excludes air/water Sacrificial anodes - electrochemical		2 x (1) [2]
	(b)	(i)	Ba = 0.3898 → 1		[4]
			Fe = $0.3889 \rightarrow 1$ O = $1.556 \rightarrow 4$ hence formula is BaFeO ₄ Oxidation state of iron is +6		(1) (1)
		(ii)	$Fe_2O_3 + 3OCl^- + 4OH^- \rightarrow 2FeO_4^{2-} + 3Cl^- + 2H_2O_4^{2-}$ (1) for species, (1) for balancing)	[4]

Mark Scheme

Syllabus

Paper

Page 8