MARK SCHEME for the October/November 2007 question paper

9701 CHEMISTRY

9701/02

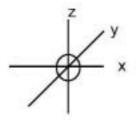
Paper 2 (Theory 1), maximum raw mark 60

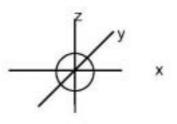
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

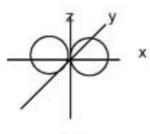
• CIE will not enter into discussions or correspondence in connection with these mark schemes.


CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9701	02



1s

2s

		141
nnh	orioal	111
รมา	CIICai	
	erical	· · /
		• •

larger spherical (1)

2px

double lobes along the *x*-axis (1)

(b) (i) attraction between bonding electrons and nuclei (1) attraction is electrostatic (1) (ii) H₂ s-s overlap clearly shown must not be normal dot/cross diagram (1) HC1 s-p overlap clearly shown [4] overlap must involve s and p orbitals (1) (c) (i) bonding electrons are unequally shared or the molecule has a dipole/ δ + and δ - ends to molecule (1) (ii) the H and Cl atoms have different electronegativities

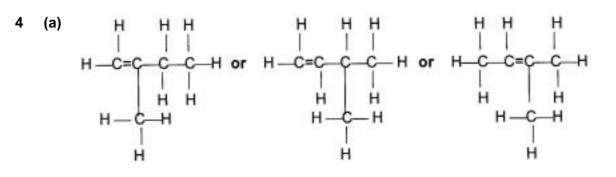
[3]

(1)

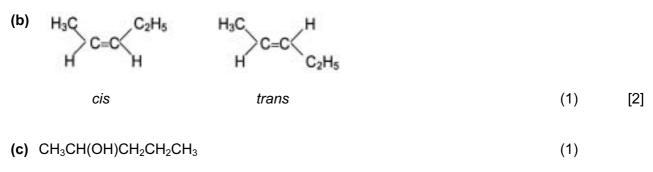
[2]

or chlorine is more electronegative than hydrogen

Pa	age 3		Syllabus	Paper	
		GCE A/AS LEVEL – October/November 2007	9701	02	
(d)		Н			
	н				
	allo	bw two 'sausages' above and below the C-C axis			
		two p orbitals overlapping sideways form one (localised) π bond over two carbon atoms		(1)	[1]
(e)	ΔH	^e _f = 2(-393.7) + 2(-285.9) - (-1411)			
	= +	51.8 kJ mol ⁻¹ (units given in qu.)		(3)	
	per	nalise errors: no 2 for –393.7			
		no 2 for –285.9 wrong sign for –(–1411)			[3]
				[Total	: 13]
2 (a)	P ₄ ($s) + 10Cl_2(g) \rightarrow 4PCl_5(s)$			
	or	$2P(s) + 5Cl_2(g) \to 2PCl_5(s)$			
	equ	uation		(1)	
	sta	te symbols		(1)	[2]
(b)	(i)	giant ionic lattice (may be in diag.)		(1)	
		strong ionic bonds		(1)	
	(ii)	simple molecular or discrete molecules			
		(may be shown in a diagram)		(1)	
		with weak intermolecular forces or			
		weak van der Waals' forces			
		between them		(1)	[4]
(c)	SiC	$Cl_4 + 2H_2O \rightarrow SiO_2 + 4HCl$			
	or	$SiCl_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl$			
	or	$SiCl_4 + 4H_2O \rightarrow SiO_2.2H_2O + 4HCl$		(1)	[1]


	Page 4			Mark Scheme	Syllabus	Pape	r
				GCE A/AS LEVEL – October/November 2007	9701	02	
	(d)	Na	C <i>l</i> pH is 7 allow neutral			(1)	
		PC	<i>l</i> ₅ pH is	between 1 and 4			
		do	not allo	ow acidic		(1)	[2]
	(e)	(i)	460 K	Al_2Cl_6		(1)	
			1150 I	$K = AlCl_3$		(1)	
		(ii)	correc	et dot-and-cross diagram for A <i>l</i> C <i>l</i> ₃		(1)	
	((iii)	correc	t displayed structure for Al ₂ Cl ₆		(1)	
			two co	prrect co-ordinate bonds		(1)	
			сı сı				[5]
						[Tota	l: 14]
3	(a)	P_4				(1)	
		S ₈				(1)	
		Cl ₂				(1)	[3]
	(b)	(i)	highes	st S ₈ P ₄ C <i>l</i> ₂ lowest			
			allow	S P C <i>l</i> or names		(1)	
		(ii)	from S	S_8 to P_4 to Cl_2			
			there a	are fewer electrons in each molecule		(1)	
			hence	weaker van der Waals' forces		(1)	[3]

Page 5		Mark Scheme	Syllabus	Paper	
		GCE A/AS LEVEL – October/November 2007	9701	02	
(c) (i)	S₂Ci	$f_2 = (2 \times 32.1) + (2 \times 35.5) = 135.2$			
	n(S ₂	Cl_2) = $\frac{2.7}{135.2}$ = 0.0199 = 0.02		(1)	
	0.02	mol S ₂ C $l_2 \rightarrow \frac{0.96}{32.1} = 0.03 \text{ mol S}$			
	1.0 r	nol S ₂ C $l_2 \rightarrow \frac{0.03 \times 1.0}{0.02}$ = 1.5 mol S		(1)	
(iii)	2S ₂ C	$Cl_2 + 3H_2O \rightarrow 3S + H_2SO_3 + 4HCl_2$			
	corre	ect products		(1)	
	bala	nced equation		(1)	[4]
(d) oxid	dation	product is H_2SO_3		(1)	
red	uctior	product is S		(1)	[2]


(1)

[1]

H atoms must be shown.

Structure must not contain any CH₃ groups

 $CH_{3}CH_{2}CH(OH)CH_{2}CH_{3}$ (1) [2]

	Pag	e 6	Mark	Scheme	Syllabus	Pape	er
			GCE A/AS LEVEL – C	October/November 2007	9701	02	
	(d)	н	, c c	orrect compound orrect mirror object/mirror mage relationship in 3D		(1) (1)	[2]
	(e)		e.g. cyclopentane			(1)	[1]
	(f) e	е.g. СН —С- —С- Н	⁸ С ₂ H ₅ СH ₃ С ₂ H ₅ С				
			repeat units must be shown ive positions of $-CH_3$ and $-C_2$	H_5 may differ from those sho	wn above	(1) [To	[1] tal: 9]
5	(a) ((i)	Cr ₂ O ₇ ^{2–} /H ⁺	allow MnO₄⁻/H⁺		(1)	
			from orange to	or purple to colourless			
	, t	-	green or green/blue			(1)	[2]
	(b) ((i)	to ensure complete oxidation	of –CH ₂ OH			
			or to keep reactants in the rea	action flask		(1)	
	(i	ii)	CH₃CHO/ethanal			(1)	[2]
	(c) ((i)	CH ₃ I/iodomethane			(1)	
	(i	ii)	nucleophilic substitution or hy	drolysis		(1)	[2]

Page 7	Mark Scheme	Syllabus	Pape	
	GCE A/AS LEVEL – October/November 2007	9701	02	
(d) step l				
red P + I	$_2$ or HI(aq) or KBr/conc H $_3PO_4$ or PI $_3$		(1)	
heat but	room temperature for PI_3		(1)	
step II				
KCN in a	aqueous ethanol		(1)	
in aqueo	us ethanol, heat under reflux		(1)	
allow aq	ueous ethanol in either place			
step III				
aqueous	mineral acid (not nitric acid)			
or NaOH	I(aq) then aqueous mineral acid		(1)	
heat			(1)	[6
			[Tota	al: 12