MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/41

Paper 41 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A/AS LEVEL – October/November 2009	9701	41
1	CO	2: si	gas (at room temperature); SiO ₂ is a high melting solic imple / discrete molecular / covalent iant covalent <i>or</i> macromolecular / giant molecular	1	[1] [1] [1] [3]
			ance that is) hard, high melting, electrical insulator s strong covalent bonds (can be in (a))	any two	[1] [1] [2]
	(c) (i)	amp	hoteric		[1]
	(ii)		$OH + PbO \longrightarrow Na_2PbO_2 + H_2O$		[1]
		(or N	NaOH + PbO + $H_2O \longrightarrow NaPb(OH)_3$ etc.)		[2]
	(d) (i)	Zn -	+ $\operatorname{Sn}^{4+} \longrightarrow \operatorname{Zn}^{2+} + \operatorname{Sn}^{2+}$		[1]
	(ii)	E ^θ = E ^θ =	= 0.15 - (-0.76) = 0.91 V = 1.52 - 0.15 = 1.37 V		[1] [1]
	(iii)	n(Sr	n^{2^+}) = 0.02 × 13.5/1000 × 5/2 = 6.75 × 10⁻⁴ mol	use of the 5/2	
		n(Sr	n^{2^+}) = 0.02 × 20.3/1000 × 5/2 = 1.02 × 10^{-3} mol	correct rest of	working [1] [1]
	(iv)		1^{4+}) = 1.02 × 10 ⁻³ – 6.75 × 10 ⁻⁴ = 3.45 × 10 ⁻⁴ mol		[1]
			atio = $6.75/3.45$ = $1.96:1 \approx 2:1$ ormula is $2SnO + SnO_2 \Rightarrow Sn_3O_4$ (cond ¹ on calc	culation, but allo	w ecf) [1]
					[8]
	(e) (i)	volu	me = $1 \times 1 \times 1 \times 10^{-5} = 1 \times 10^{-5} \text{ m}^3 \text{ or } 10 \text{ cm}^3$		[1]
	(ii)		es = vol × density = 10 × 7.3 = 73 g es = mass/A _r = 73/119 = 0.61 mol		ecf [1] ecf [1]
	(iii)	Q =	nFz = 0.61 × 9.65 × 10 ⁴ × 2 = 1.18 (1.2) × 10 ⁵ coul	ombs	ecf [1]
					[4]

[Total: 19]

	Page 3	3	Mark S GCE A/AS L	Syllabus 9701	Paper 41			
2	(a) Ca	²⁺ (g)	+ 2Cl⁻(g) ——					[1] [1]
	(b) Ca	F ₂ and	d CaS both have	e larger lattice	energies (tha	an CaCl ₂)		[1]
	(i)	F⁻ is	smaller than Cl	-				[1]
	(ii)	S ^{2−} i	s more highly ch	arged than C	_			[1] [3]
	(c) LE		[178 + 590 + 115 ✓ 2260 (kJ mol ^{−1})	50] – [244 – 2 ✓	× 349] – 796	signs√		[3] [3]
	(d) (i)	Ca C H O	= 28.2/40.1 = 25.2/12 = 1.4/1 = 45.1/16	= 0.703 = 2.10 = 1.4 = 2.82	$\begin{array}{ccc} \Rightarrow & 1 \\ \Rightarrow & 3 \\ \Rightarrow & 2 \\ \Rightarrow & 4 \end{array}$	(1 marł	< for initial step of	of calc'n)
			formula is Ca	$C_3H_2O_4$		(1)		[2]
	(ii)	malo	onic acid must be	e C ₂ H ₄ O ₄ , i.e.	CH ₃ (CO ₂ H) ₂	(must b	e structural)	[1] [3]
								[Total: 10]
3	ligh ele col	nt is al ectron	s split into two / o bsorbed is promoted fron oserved is the co	n a lower to a	higher level	sorbed	any 3	points [3] [3]
	(b) (i)	[Cu([Cu(H ₂ O) ₆] ²⁺ is pale t NH ₃) ₄ (H ₂ O) ₂] ²⁺ is	blue s deep / dark	blue <i>or</i> purple	9		[1] [1]
	(ii)		ause it has a largause λ_{max} is in the	•	•	•		[1] [1]
	(iii)		e will have λ_{max} k maximum ϵ_{o} in k			nm		[1] [1] [6]
	(c) (i)	K _c =	[CuCl ₄ ²⁻]/([Cu ²⁺]	[[Cl [−]] ⁴)	units	are mol ⁻⁴ o	1 ¹²	[1] + [1]
	(ii)	[Cu0	Cl ₄ ^{2–}]/[Cu ²⁺] = K	_c [Cl [−]] ⁴ = 672	(no units)			[1]
								[3] [Total: 12]

	Page 4		ge 4 Mark Scheme: Teachers' version		Paper
			GCE A/AS LEVEL – October/November 2009	9701	41
4	(a)	(cyclohe: due to O	kanol & phenol) hydrogen bonding to (solvent) water ו H group	nolecules	[1] [1] [2]
	(b)		le anion is more stable (than cyclohexoxide) / OH bor elocalisation of charge / lone pair over the ring	d is weaker	[1] [1] [2]

(c)			
	reagent	product with cyclohexanol	product with phenol
	Na(s)	RONa <i>or</i> RO⁻Na⁺	ArONa <i>or</i> ArO⁻Na⁺
	NaOH(aq)	no reaction	ArONa <i>or</i> ArO⁻Na⁺
	Br ₂ (aq)	no reaction	tribromophenol
	I₂(aq) + OH⁻(aq)	no reaction	no reaction
	an excess of acidified $Cr_2O_7^{2-}(aq)$	cyclohexanone	no reaction

5 × [1] s [2]

five correct "no reaction"s (4 correct = [1]; 3 correct = [0])

five correct products

[7]

(d) *either* Br₂(aq): no reaction with cyclohexanol; decolourises *or* white ppt with phenol

or $Cr_2O_7^{2-} + H^+$: turns from orange to green with cyclohexanol; no reaction with phenol

- correct reagent chosen **and** the correct "no reaction" specified [1]
 - correct positive observation [1]
 - [2]
 - [Total: 13]

	Ра	ge 5	5	Mark Sche	me: T	eachers' version		Syllabus	Paper
				GCE A/AS LEVE	L – O	ctober/November	2009	9701	41
5	(a)		II:	KMnO₄ heat with H ⁺ or OH ⁻ SOCl₂ or PCl₅ or PC		(NOT aq)	nuct bo d	ioplayed for min	[1] [1] [1]
		(11)	-[-0(O-C ₆ H₄-CO-NH-C ₆ H₄	-INLJ-]-	(Peplide bond i	nusi be u		m) [1] [4]
	(b)	(i)	CH ₃	NHCO-C ₆ H ₄ -CONHC	CH₃	(1 mark for each	end)		[1] + [1]
		(ii)		$CH_2CH_2O-CO-C_6H_4-C$ the polymer -[- OCH_2					for [1] for [2] [4 max 3]
	(c)	(i)	Cl- +	$^{+}NH_{3}-C_{6}H_{4}-NH_{3}^{+}CI^{-}$	(1 n	nark for each end))		[1] + [1]
		(ii)	H ₂ N	$I-C_6H_2Br_2-NH_2 \text{ or } H_2N$	-C ₆ H ₂ E	Br ₃ -NH ₂ <i>or</i> H ₂ N-C ₆	Br ₄ -NH ₂		[1] [3]
	(d)	I:		D₂ (<i>or</i> NaNO₂ + HCl/ŀ [′] < 10ºC	H₂SO₄)				[1] [1]
		II:	•	rop-2-yl phenol, (CH ₃ aOH(aq)	₃)₂CH-(C ₆ H₄OH			[1] [1] [4]
	(e)	(i)	A sp	pecies having positive	e and r	negative ionic cent	res / cha	rges, with no ove	erall charge [1]
		(ii)	-0 ₂ 0	$C-C_6H_4-NH_3^+$					[1] [2]
									[Total: 16]

F	Page 6		Mark Scheme: Teachers' version	Syllabus	s Pa	aper
			GCE A/AS LEVEL – October/November 2009	9701		41
6 (a	Tw	o ami	amino acids correctly paired no acids correctly paired elled H-bond between strands		(2) (1) (1)	[3]
(t	o) (i)	– ca	A – each amino acid has its own specific / appropriate arry amino acids to ribosomes / mRNA ontains a triplet code / anticodon	tRNA	(1) (1) (1)	
	(ii)		some – attaches / moves along / binds to mRNA semble amino acids in correct sequence for / synthesis	ses protein	(1) (1)	[5]
(0	c) (i)	Base	e miscopied / deleted		(1)	
	(ii)	This	uence of bases is changed may result in different amino acid sequence – differen affect shape / tertiary structure of protein	t protein	(1) (1) (1)	[Max 3]
				ſ	Total: 12	max 11]

	Page 7		,	Mark Scheme: Teachers' version	Syllabus	Pape	r
				GCE A/AS LEVEL – October/November 2009	9701	41	
7	(a)	(i)	Posi	tions of atomic nuclei / atoms		(1)	
	((ii)	Insu	fficient electrons / electron density / electron cloud (arc	ound H atom)	(1)	[2]
	• •		• •	estallography can show the geometry of the arrangeme between atoms / shape of atoms	ent of atoms /	(1)	
		Thi	s can	help explain how e.g. enzymes work (any reasonable	example)	(1)	[2]
	(c)	(i)	Nucl	lear spin		(1)	
	((ii)	(If M	: M+1 gives a ratio 15 : 2)			
			Ther	$hx = \frac{100 \times 2}{1.1 \times 25} = 7$		(1)	
			Sing	le peak at 3.7 δ due to –O-CH $_3$		(1)	
			Sing	le peak at 5.6 δ due to phenol / OH		(1)	
			1,2,7	1 peak at 6.8 δ due to hydrogens on benzene ring		(1)	
			Patte	ern suggests 1,4 subsitution		(1)	
			(x =	7,) y = 8, z = 2		(1)	
			Com	pound is 4-methoxylphenol		(1) Max 5	[6]
						[Tota	l: 10]

	Page 8			Mark Scheme: Teachers' version	Syllabus		Paper
				GCE A/AS LEVEL – October/November 2009	9701		41
8	(a)	Gra	aphite	/ graphene		(1)	
	(b)	The	ey do	not exist as sheets / layers of carbon atoms		(1)	
	(c)		-	ths of nanotubes are much shorter than the curvature so small that they are not effected by rolling	of the paper /	(1)	
	(d)	An	y molt	en ionic salt (or plausible organic ionic compounds)		(1)	[Total: 4]
9	(a)	(i)	Cov	alent / co-ordinate		(1)	
		(ii)	Mec	hlorethamine – binds the two chains together – prevents unravelling		(1) (1)	
			Cis-	platin – binds to two Gs / bases in one chain – so they are not available for base pairing		(1) (1)	
							[Total: 5]