MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – October/November 2011	9701	43
1	(a) Cr ³⁺ : Mn ²⁺ :	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵		[1] [1] [2]

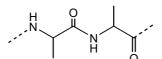
- (b) (i) Any two from
 - H^+ is on the oxidant/L.H. side of each of the $\frac{1}{2}$ -equations, or H^+ is a reactant
 - (increasing [H⁺]) will make E^e more positive
 - (increasing [H⁺]) will drive the reaction over to the R.H./reductant side *or* forward direction

[1] + [1]

- (ii)KMnO4:Purple/violet to colourless (allow very pale pink)[1]K2Cr2O7Orange to green[1][4]
- (c) (i) $MnO_2 + SO_2 \longrightarrow MnSO_4 (or Mn^{2+} + SO_4^{2-})$ [1]

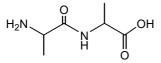
manganese changes/is reduced from +4 to +2	[1]
sulfur changes/is oxidised from +4 to +6	[1]

- (ii) No effect, because H⁺ does not appear in the overall equation *or* its effect on the MnO₂/Mn²⁺ change is cancelled out by its effect on the SO₂/SO₄²⁻ change [1]
 [4]
- (d) (i) $MnO_2 + 4H^+ + Sn^{2+} \longrightarrow Mn^{2+} + 2H_2O + Sn^{4+}$ [1]
 - (ii) $n(MnO_4^{-}) = 0.02 \times 18.1/1000 = 3.62 \times 10^{-4} \text{ mol}$ [1] $n(Sn^{2^+}) = 3.62 \times 10^{-4} \times 5/2 = 9.05 \times 10^{-4} \text{ mol}$ [1] $n(Sn^{2^+})$ that reacted with $MnO_2 = (20 - 9.05) \times 10^{-4} = 1.095 \times 10^{-3} \text{ mol}$ [1] reaction is 1:1, so this is also $n(MnO_2)$ mass of $MnO_2 = 1.095 \times 10^{-3} \times (54.9 + 16 + 16) = 0.0952 \text{ g}$ [1] \Rightarrow 95% - 96%; 2 or more s.f. [1]


[Total: 16]

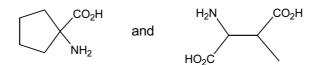
	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A LEVEL – October/November 2011	9701	43
2	(a) (i)		olecule/ion/species with a lone pair (of electrons) <i>or</i> elenate bonds to a metal ion/transition element	ectron pair dono	r [1]
	(ii)	by	means of a dative/coordinate (covalent) bond		[1] [2]
	(b) (i)	strai	ght line from (0, 0.01) to point at (350, 0.0028) with all	points on the lin	e [1]
	(ii)		er w.r.t. $Cr(CO)_6$ is 1 and order w.r.t. PR_3 is zero		[1]
		because (a) Cr(CO) ₆ graph has a constant half-life (which is 700 s) or construction lines on graph showing this) because (b) PR ₃ graph is a straight line (of constant slope) or line shows a constant of reaction or no change in rate or shows a linear decrease			[1] a constant rate [1]
	(iii)	rate	$= k[Cr(CO)_6]$		[1]
		k = ((0.9 – 1.1) × 10⁻³ (s ⁻¹) (one or more s.f.)		[1]
		or	er rate ₀ = $0.01/1020 = 9.8 \times 10^{-6} \text{ mol sec}^{-1}$ when [Cr(C4 so k = $9.8 \times 10^{-6}/0.01 = 9.8 \times 10^{-4}$ t _{1/2} \approx 700 sec k = $0.693/700 = 9.9 \times 10^{-4}$	O) ₆] = 0.01 mol o	dm ⁻³
	(iv)	(unit	ts of k are) sec ⁻¹		[1]
	(v)	<i>eithe</i> mec beca	the chosen mechanism must be consistent with the rate r if rate = k[Cr(CO) ₆] thanism B is consistent ause it's the only mechanism that does NOT involve P or only Cr(CO) ₆ is involved in slow step or [PR ₃] does	R₃ in its slow/ra	[1] te-determining
		or			
		mec	te = k[Cr(CO) ₆][PR ₃], then hanism A or C or D is consistent ause both reactants are involved in slow step		[1] [1] [9]
					[Total: 11]

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – October/November 2011	9701	43
3	(a) (i) I	E is CH ₃ CH(NH ₂)CN		[1]
	(ii) (C ₆ H₅CH₂CHO		[1] [2]


 (b) (i) a polymer/polypeptide of amino acids, (joined by peptide bonds) (allow 'chain of amino acids' but not 'sequence': the idea of 'many' has to be conveyed)
 [1]

(ii)

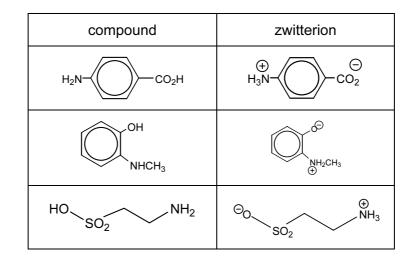
peptide bond shown in full (C=O) in an ala-ala fragment in a chain [1] two repeat units [1]


Allow peptide bond shown in full (C=O) in a dipeptide ala-ala for 1 mark

[3]

(c) (i) $HCl or H_2SO_4 or NaOH or H^+ or OH^-$ reagents [1] + heat and H_2O/aq (allow H_3O^+). If T is quoted, 80 °C < T < 120 °C. NOT warm. conditions [1]

(ii)



(if a structural formula, it must have all H atoms) allow protonated or deprotonated versions [1] + [1] [max 3]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9701	43

⁽d) (i) $NH_3^+ - CH(CH_3) - CO_2^-$

(ii)

[3] **[4]**

(e) (i) A buffer is a solution whose pH stays fairly constant or which maintains roughly the same pH or which resists/minimises changes in pH [1] when small/moderate amounts of acid/H⁺ or alkali/OH⁻ are added [1] (ii) $NH_2CH(CH_3)CO_2H + H(Cl) \longrightarrow {}^{+}NH_3CH(CH_3)CO_2H (+ Cl^{-})$ [1] (iii) blood contain HCO_3^- (or in an equation) [1] $\begin{array}{c} H^{+} + HCO_{3}^{-} \longrightarrow H_{2}CO_{3} (H_{2}O + CO_{2}) \\ OH^{-} + HCO_{3}^{-} \longrightarrow CO_{3}^{2-} + H_{2}O \end{array}$ which absorbs H^+ or equn or absorbs OHor equn [1] (iv) $[CH_3CO_2Na] = 0.05 [CH_3CO_2H] = 0.075$ [1] pH = 4.76 + log (0.05/0.075) = 4.58 or 4.6[1] [7]

[Total: 19]

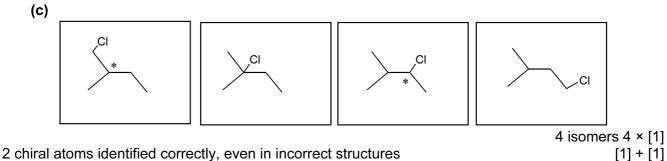
[1]

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A LEVEL – October/November 2011	9701	43
4	(a) Ca(NO ₃);	$_2 \longrightarrow CaO + 2NO_2 + \frac{1}{2}O_2$		[1] [1]
	dec as s	ompo size/ra	ne group) nitrates become more stable or requ ose adius of (cat) ion increases or charge density of ion de sation/distortion of anion/nitrate decreases	-	emperature to [1] [1] [1] [3]
	(c) (i)	Li ₂ C	$O_3 \longrightarrow Li_2O + CO_2$		[1]
	(ii)	radiu	is of Li ion/Li $^{+}$ is less than that of Na ion/Na $^{+}$ (or polaris	sing power of M	⁺ is greater) [1]
	(iii)	Sinc	vn/orange fumes/gas would be evolved <i>or</i> glowing splite the nitrate is likely to be thermally unstable of onate) <i>or</i> the balanced equation: $2\text{LiNO}_3 \longrightarrow \text{Li}_2\text{O} + \text{Li}_2\text{O} +$	r decomposes	[1] (just like the [1] [4]

[Total: 8]

	Page 7		,	Mark Scheme: Teachers' version	Syllabus	Paper
			GC	E A LEVEL – October/November 2011	9701	43
5	• •			polar <i>or</i> have no dipole <i>or</i> C–H bonds are stro similar electronegativities	ong	[1] [1]
	(b)	(i)	(free) radica	substitution or substitution by homolytic fission	n	[1]
		(ii)		$Cl_2 \longrightarrow 2Cl^{\bullet}$ $Cl^{\bullet} + C_2H_6 \longrightarrow C_2H_5^{\bullet} + HCl$		[1]
				$C_{2}H_{5}^{\bullet} + Cl_{2} \longrightarrow C_{2}H_{5}Cl + Cl^{\bullet}$ $C_{2}H_{5}^{\bullet} + Cl^{\bullet} \longrightarrow C_{2}H_{5}Cl$		[1]
				or $Cl^* + Cl^* \longrightarrow Cl_2$ etc		[1] all 3 names [1]
	(i <u>ii)</u>				

structural formula of by-product	formed by
CH ₂ CI–CH ₂ CI (or isomer)	further substitution
CH ₃ CH ₂ CH ₂ CH ₃	(termination of 2 ×) C ₂ H ₅ •
CH ₃ CH ₂ CH ₂ CH ₂ CI (or isomer)	substitution of C₄H₁₀ by-product


[3]

accept in the "formed by" column the formulae of radicals that will produce the compound in the "by-product" column, or the reagents, e.g. $C_4H_9^{\bullet} + Cl_2 \text{ or } C_4H_9^{\bullet} + Cl$ or $C_4H_{10} + Cl_2$ (giving $CH_3CH_2CH_2CH_2CI$).

do not allow anything more Cl-substituted than **di**chlorobutane. N.B. C_2H_5Cl is the **major** product, not a **by**-product, so do not allow C_2H_5Cl .

(iv) J/K = 2.3 : 1 or 7:3 or 21:9 [2] (reason: straightforward relative rate suggests 21:1, but there are 9 primary to 1 tertiary, so divide this ratio by 9. 21/9 = 2.33) allow [1] mark if J/K ratio is given as 21:1;

[10]

[max 5]

	Page 8		Mark	Scheme: Teachers' version	Syllabus	Paper
			GCE A L	EVEL – October/November 2011	9701	43
6	(a) (i)		K, because it is the (only) one to contain nitrogen or it's an amino acid or because it contains CO ₂ H or NH groups			
	(ii)		molecule: J, molecule: L,	polymer: RNA (not DNA) polymer: starch, cellulose, glycogen c (not carbohydrate)	r polysaccharide	[1]
						[2]
	<i></i>	-				
	(b) (i)	Cova	alent bonding			[1]
	(ii)	Hyd	rogen bonding			[1]
	(iii)	Ionio	c/electrovalent	bonding <i>or</i> disulphide/–S–S– bonding a	or van der Waals	' forces [1]
						[3]
	(c) (i)	Enzy	ymes			[1]
	(ii)	• inc)T decrease; T > 40 °C or "too high" are metal ions <i>or</i> specific, e.g. Hg ²⁺ , Ag ⁺ . F	²⁺ etc.	points [1] + [1]
		<i>or</i> m <i>or</i> m	etal ions disru netal ions disru	ot –S–S– bonds		
		or ne	eaung disrupts	hydrogen bonds		any one [1]
	This ch	ange	: the 3D struct	ure or shape of the enzyme or the activ	vo sito	
		anges				[1] [max 4]

[Total: 9]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9701	43

7 (a)

structural information	analytical technique	
three-dimensional arrangement of atoms and bonds in a molecule	X-ray crystallography/diffraction	
chemical environment of protons in a molecule	NMR (spectroscopy) only	
identity of amino acids present in a polypeptide	Electrophoresis / chromatography / mass spectrometry	
		[1] + [1] + [1]

[3]

(b) (i) paper chromatography;

The components **partition** between the solvent/moving phase and the water/liquid stationary phase *or* separation relies on different solubilities (of components) in the moving solvent and the stationary water phase. [1]

(ii)	thin-layer chromatography.								
	Separation depends on the differential adsorption of the components	onto the solid							
	particles/phase or Al_2O_3 or SiO ₂ .	[1]							

[2]

[1]

(c) (i) No. of carbon atoms present =
$$\frac{0.2 \times 100}{5.9 \times 1.1}$$
 = 3.08 hence 3 carbons [1]

- (ii) Bromine
- (iii) One bromine is present as there is only an M+2 peak / no M+4 peak *or* the M and M+2 peaks are of similar height [1]
- (iv) NMR spectrum shows a single hydrogen split by many adjacent protons and 6 protons in an identical chemical environment. This suggests...
 two –CH₃ groups and a lone proton attached to the central carbon atom [1]

Empirical formula of **N** is C_3H_7Br

Hence N is $(CH_3)_2CHBr$ or H CH₃-C-CH₃

Β̈́r

[1]

[1]

[6]

[Total: 11]

Pa	Page 10		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A LEVEL – October/November 2011	9701	43
8 (a)	(i)	Solu	ble form would be most effective		[1]
	 Q, since the 'mini-pills'/granules/powder have a larger surface area or P, because it has no protective casing 				[1]
	(iii) The gel coat stops it being broken down while passing through the upper part of				
		•	stive system/stomach e gel coat is stable to stomach acid.		[1] [3]
(b) The drug is taken quickly/directly to the target					
(d)	(b) The drug is taken quickly/directly to the target or more accurate dosing can be achieved				
When the drug is taken by mouth it has to pass through the stomach/intestine wall to get into the bloodstream. <i>or</i> some is digested/lost to the system [1 [2]					
(c)	(i)	conc	lensation (polymerisation)		[1]
	(ii)	hydr	ogen bonds <i>or</i> van der Waals'		[1]
	(iii)		uld change the overall shape of the (drug) molecule 'fit' into the active site would be less effective		[1] + [1]
	(iv)	Hydr	olysis		[1] [5]
					[Total: 10]