MARK SCHEME for the October/November 2013 series

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

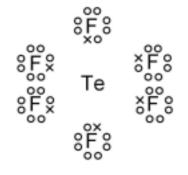
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9701	21


1 (a)

number of bond pairs	number of lone pairs	shape of molecule	formula of a molecule with this shape
3	0	trigonal planar	BH₃
4	0	tetrahedral	CH₄ allow other Group IV hydrides
3	1	pyramidal or trigonal pyramidal	NH₃ allow other Group V hydrides
2	2	non-linear or bent or V-shaped	H₂O allow other Group VI hydrides

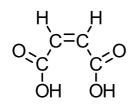
1 mark for each correct row

(3 × 1) [3]

(b) (i)

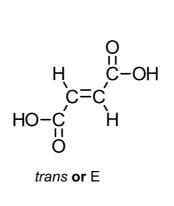
(ii)	octahedral or square-based bipyramid	(1)	
(iii)	90°	(1)	[3]

[Total: 6]

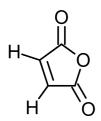

(1)

	Page 3					Mark Schei				Syllabus	Pape	r
				GCE	AS/A LEVE	EL – Octob	er/Noven	100 nber 201	3	9701	21	
2	(a)	117	7° to 1	20°							(1)	[1]
	(b)	(i)	elect	trophilic a	addition						(1)	
		(ii)										
				н 			Н			H		
				Ċ H			Ċ H		H C H	Ċ H		
					01	01		01			01	
					ch correct s y drawn opt		s of the firs	st structu	re		(3 × 1)	[4]
											[Tota	al: 5]
3	(a)	(i)	anoo	de	Cl [−] (aq) →	½ C <i>l</i> ₂(g) +	e ⁻				(1)	
			cath		H⁺(aq) + 6 2H ₂ O(I) + 2			(aq)			(1)	
		(ii)	beca	ause iron	in steel will	react with c	hlorine				(1)	[3]
	(b)	bur forr allc	ms a v w – o	vhite soli	I – colour of		sappears				(1) (1)	
		bur		h a white	e or yellow fi disappears		en for Na	– or				
		for	PC <i>1</i> ₅	t	forms a whit	te or pale ye	ellow solid	t				
		for	PC <i>1</i> ₃	1	forms a colo	ourless liquio	b				(1)	
		Ρ-	+ 21/2	$e^{Cl_2} \rightarrow F$	PC l ₅	or P ₄ + 10	$Cl_2 \rightarrow 4$	PC <i>l</i> ₅				
		or										
		Ρ-	+ 1½	$_{2}Cl_{2} \rightarrow F$	PCl ₃	or P ₄ + 60	$Cl_2 \rightarrow 4F$	PCl ₃				
		equ	uation	must ref	er to compo	und describ	ed				(1)	[4]

Page 4	Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL – October/November 2013	9701	21	
(c) cold d	ilute aqueous NaOH			
NaOC	1		(1)	
+1			(1)	
hot co	ncentrated aqueous NaOH			
NaC <i>l</i> C	03		(1)	F 41
+5			(1)	[4]
(d) MgC <i>l</i> ₂	6.5 to 6.9		(1)	
SiC14	0 to 3		(1)	
MgCl ₂	dissolves without reaction or		(4)	
	slight or partial hydrolysis occurs		(1)	
SiC14	reacts with water or hydrolysis occurs		(1)	
	$2H_2O \rightarrow SiO_2 + 4HCl$ or			
	$-4H_2O \rightarrow Si(OH)_4 + 4HCl \text{ or}$ $-4H_2O \rightarrow SiO_2.2H_2O + 4HCl$		(1)	[5]
			[Total	: 16]
4 (a) (i) H ₂	$X + 2NaOH \rightarrow Na_2X + 2H_2O$		(1)	
(ii) n(OH ⁻) = $\frac{21.6 \times 0.100}{1000}$ = 2.16 × 10 ⁻³ mol		(1)	
(iiii) n($\mathbf{R}) = n(H_2X) = \frac{2.16 \times 10^{-3}}{2}$			
(11) //($2 = 1.08 \times 10^{-3} \text{ mol in } 25.0 \text{ cm}^3$		(1)	
			(')	
(iv) n(R) = $1.08 \times 10^{-3} \times \frac{250}{25.0} = 0.0108 \text{ mol in } 250 \text{ cm}^3$		(1)	
• •	0108 mol of R = 1.25 g of R			
1	mol of R = $\frac{1.25 \times 1}{0.0108}$ = 115.7 = 116 g		(1)	[5]


Page 5	Mark Scheme	Syllabus	Paper	,
	GCE AS/A LEVEL – October/November 2013	9701	21	
M	of $S = 116$ of $T = 134$ of $U = 150$ all three needed		(1)	
(ii) S			(1)	[2]
or H₃F	T H ₂ SO ₄ followed by H ₂ O O ₄ followed by H ₂ O or and H ₃ PO ₄ catalyst		(1 + 1)	
S into KMnO cold di			(1) (1)	
	S or conc. H ₂ SO ₄ or conc. H ₃ PO ₄ or A <i>l</i> ₂ O ₃ eat in each case		(1)	[5]
(d) T reac	ting with an excess of Na			
NaO ₂ C	CH(ONa)CH ₂ CO ₂ Na		(1)	
U read	ting with an excess of Na ₂ CO ₃			
NaO ₂ O	CH(OH)CH(OH)CO₂Na		(1)	[2]

two correct structures correct labels


(1) (1) [2]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9701	21

(f) correct ring of C and O atoms, i.e.

correct compound, i.e.

= 2200 kJ mol⁻¹

(hydrogen atoms do not need to be shown)

[Total: 18]

(1)

[5]

(1)

[2]

5	(a) (i)	alkanes or paraffins not hydrocarbons	(1)	
	(ii)	$2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$	(1)	[2]
	(b) (i)	carbon allow graphite	(1)	
	(ii)	$2C_4H_{10} + 5O_2 \rightarrow 8C + 10H_2O$ allow balanced equations which include CO and/or CO ₂	(1)	[2]
	is b	halpy change when 1 mol of a substance ournt in an excess of oxygen/air under standard conditions is completely combusted under standard conditions	(1) (1)	[2]
	(d) (i)	$m = \frac{pVM_r}{RT} = \frac{1.01 \times 10^5 \times 125 \times 10^{-6} \times 44}{8.31 \times 293} \text{ g}$	(1)	
		= 0.228147345 g = 0.23 g	(1)	
	(ii)	heat released = m c δ T = 200 × 4.18 × 13.8 J = 11536.8 J = 11.5 kJ	(1) (1)	
	(iii)	0.23 g of propane produce 11.5 kJ 44 g of propane produce $\frac{11.5 \times 44}{0.23}$ kJ		

Page 7		Mark Scheme	Syllabus	Paper
		GCE AS/A LEVEL – October/November 2013	9701	21
(e) (i)	there	methane to butane e are more electrons in the molecule efore greater/stronger van der Waals' forces		(1) (1)
(ii)	there	ght chain molecules can pack more closely efore stronger van der Waals' forces everse argument		(1) (1) [4]
				[Total: 15]