MARK SCHEME for the October/November 2013 series

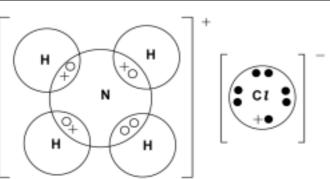
9701 CHEMISTRY

9701/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.


Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	41

1 (a)

8 e⁻ around chlorine[1]1 H-electron (+) on the Cl^- ion[1]3 covalent (ox) and one dative (oo) around N[1]

[3]

(b) (i)	it would react (with H ₂ SO ₄)			
(ii)	$CaO + H_2O \longrightarrow Ca(OH)_2$	[1]		
(iii)	CaO absorbs more water or CaO has greater affinity for water	[1]		
		[3]		
(c) (i)	$2Ca(NO_3)_2 \longrightarrow 2CaO + 4NO_2 + O_2$	[1]		
(ii)	(Down the group, the nitrates)			
	become more stable/stability increases	[1]		
	because the size/radius of ion (M^{2+}) increases	[1]		
	thus causing less polarisation/distortion of the anion/NO ₃ ⁻ /N-O bond	[1]		
		[4]		

[Total: 10]

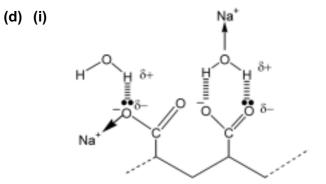
	Page 3	age 3 Mark Scheme		Syllabus	Paper
			GCE A LEVEL – October/November 2013	9701	41
2	(a) (i)	Si-S	i bonds are weaker (than C-C bonds)		[1]
	(ii)	meta	allic (Sn) is weaker than (giant) covalent (Ge)		[1]
					[2]
	(b) (i)	or Si or Si	$\begin{array}{rcl} &+& 2H_2O & \longrightarrow & SiO_2 + 4HCl \\ &Cl_4 &+& 4H_2O & \longrightarrow & Si(OH)_4 + 4HCl \\ &Cl_4 &+& 3H_2O & \longrightarrow & H_2SiO_3 + 4HCl \\ &cl_4 &+& 3H_2O & \longrightarrow & H_2SiO_3 + 4HCl \\ &cl_4 &+& 3H_2O & \longrightarrow & H_2SiO_3 + 2HCl \\ &cl_4 &+& 3HCl \\ &cl_4 &$		[1]
	(ii)	PbC	$l_4 \longrightarrow PbC l_2 + C l_2$		[1]
	(iii)	SnC	l_2 + 2FeC $l_3 \longrightarrow$ SnC l_4 + 2FeC l_2		[1]
	(iv)	or S	$_{2}$ + 2NaOH \longrightarrow Na ₂ SnO ₃ + H ₂ O nO ₂ + 2NaOH + 2H ₂ O \longrightarrow Na ₂ Sn(OH) ₆ nic equation SnO ₂ + 2OH ⁻ \longrightarrow SnO ₃ ²⁻ + H ₂ O		[1] [4]
					[Total: 6]

Page 4		Mark Scheme GCE A LEVEL – October/November 2013	Syllabus 9701	Paper 41	•
			5701	41	
(a) (i)		+ HZ \longrightarrow NH ₄ ⁺ + Z ⁻ OH + HZ \longrightarrow CH ₃ OH ₂ ⁺ + Z ⁻			[1] [1]
(ii)		+ $B^{-} \longrightarrow NH_{2}^{-}$ + BH $OH + B^{-} \longrightarrow CH_{3}O^{-}$ + BH			[1] [1]
					[4]
(b) (i)	a rea	action that can go in either direction			[1]
(ii)		of forward = rate of backward reaction rward/back reactions occurring but concentrations of a	all species do no	t change	[1]
					[2]
(c) (i)	a so	lution that resists changes in pH			[1]
	whe	n small quantities of acid or base/alkali are added			[1]
(ii)	in th	e equilibrium system HZ + $H_2O \Rightarrow Z^- + H_3O^+$			[1]
		tion of acid: reaction moves to the left [⁺] combines with Z⁻ <u>and</u> forms HZ			[1]
		tion of base: the reaction moves to the right [⁺] combines with OH⁻ <u>and</u> more Z⁻ formed			[1]
				[5 ma	x 4]
(d) (i)	[H⁺]	= $\sqrt{(0.5 \times 1.34 \times 10^{-5})}$ = 2.59 × 10 ⁻³ (mol dm ⁻³)			[1]
	pH =	2.59/2.6 (min 1 d.p)		ecf	[1]
(ii)	CH ₃	$CH_2CO_2H + NaOH \longrightarrow CH_3CH_2CO_2Na + H_2O$			[1]
(iii)	n(ac	id) in 100 cm ³ = 0.5 × 100/1000 = 0.05 mol id) remaining = 0.05 – 0.03 = 0.02 mol l remaining] = 0.2 (mol dm ⁻³)			[1]
		vise, n(salt) = 0.03 mol + 0.3 (mol dm ⁻³)			[1]
(iv)	pH =	4.87 + log(0.3/0.2) = 5.04–5.05		ecf	[1]
					[6]
(a) Gi	s CH-	CH ₂ COC <i>l</i>			
H is		Cl_2 or PC l_5			[2]

J is NaCl [2] (or corresponding Br compounds for G, H and J; CH₃CH₂COBr, SOBr₂, NaBr)

[Total: 18]

	Page 5			Mark Scheme	Syllabus	Paper	
				GCE A LEVEL – October/November 2013	9701	41	
4				gy change) when 1 mol of bonds in the gas phase			[1] [1]
							[2]
	(b)	(i)	(C-X	bond energy) decreases/becomes weaker (from F to	I)		[1]
			due	to bond becoming longer/not such efficient orbital over	lap		[1]
	(•	•	he bond energy of C-X decreases) the halogenalkanes wer must imply that it is from F to I)	s become more r		[1]
							[3]
				<i>l</i> bond is weaker than the C-F <u>and</u> C-H bonds bond (E = 340) and C-H (E = 410)			[1]
			•	sily) broken to form Cl^{\bullet}/Cl radicals/Cl atoms the breakdown of O ₃ into O ₂			[1] [1]
	,	Juu	Sing t				
							[3]
	• •			H ₂ -CO ₂ H			[1]
	1	HU-		CH_2CH_2 - Cl			[1]
				OH			
	I	Br					[1]
							[3]
	(e)	(i)	light/	/UV/hv <i>or</i> 300°C			[1]
	(ii)	(free	e) radical substitution			[1]
	(i	ii)	ΔH :	= $E(C-H) - E(H-Cl) = 410 - 431 = -21 \text{ kJ mol}^{-1}$			[1]
	(i	v)	ΔH :	= $E(C-H) - E(H-I) = 410 - 299 = +111 \text{ kJ mol}^{-1}$		ecf	[1]
	(v)	The	reaction with iodine is endothermic or ΔH is positive or	r requires energy		[1]
	(\		CH ₃ ($ 2Cl^{\bullet} \\ CH_{2}^{\bullet} + Cl_{2} CH_{3}CH_{2}Cl + Cl^{\bullet} \\ CH_{2}^{\bullet} + Cl^{\bullet} CH_{3}CH_{2}Cl $			[1] [1] [1]
			U130				
							[8]
						[Total: '	19]


	Page 6	5	Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2013	9701	41
5	(a) (i)	man	y monomers form a polymer		[1]
	(ii)	addi	tion		[1]
	(iii)		/double/ π bond is broken and new C-C single bond <u>s</u> abulle bond breaks and forms single bonds with other bounds breaks and forms single bonds with other bounds breaks and forms single bonds with other bounds because the second s		[1]
					[3]
	(b) pro	penoi	c acid		[1]
					[1]

(c) (i) CO₂Na CO₂Na

carbon chain and CO_2H at least one sodium salt

- (ii) 120° to 109(.5)° [1] due to the change from a trigonal/sp² carbon to a tetrahedral/sp³ carbon [1]
 - [4]

[1] [1]

Any four: hydrogen bond **labelled** water H-bonded to O through H atom δ +/ δ - shown on each end of a H-bond lone pair shown on O⁻ or C=O or H₂O on a **correct H-bond** Na⁺ shown as coordinated to a water molecule

- (ii) Solution became paler and Cu⁽²⁺⁾ swapped with Na⁽⁺⁾
 or darker in colour and polymer absorbs water [1]
 - [4]

[3]

Page 7	,	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – October/November 2013	9701	41
(e) (i)	alke	ne(1), amide(1)		[2]
(ii)	NH_3			[1]
(iii)	H ₂ O			[1]
(iv)		(aq)/H₃O [⁺] and heat/reflux (not warm) H⁻ (aq), heat and acidify		[1]
	01 0	i (aq), neat and actury		[5]
				[Total: 17]

Page	e 8	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – October/November 2013	9701	41
		Section B		
(a) ((i) s	ix/6 (gsv, sgv, gvs, vgs, svg,vsg)		['
(i	ii)	HO_ H ₃ C_ CH ₃		
			он	
		H ₂ N NH		
) ö		
	tv	vo displayed peptide bonds		[1
		orrect formula of peptide		[1
(ii	ii) va	aline (allow glycine)		[′
(iv	v) a	ny two of:		
		ydrogen bonds and CO ₂ H <i>or</i> OH <i>or</i> NH ₂ <i>or</i> CONH <i>or</i> CO onic bonds and NH ₃ ⁺ <i>or</i> CO ₂ ⁻	or NH or CO_2^-	
	Va	an der Waals' and $-CH_3$ or $-H$		2 × [1
				[6
(b) ((i) sa	ame shape/structure as substrate		[1
		nhibitor) competes/blocks/binds/bonds to active site <i>r</i> substrate cannot bind to active site		٢
				[1
((ii) b	inds with enzyme and changes shape/3D structure (of er	zyme/active site)	[′
((iii)			
		No inhibitor		
		. /		
		ation		

[1]

[4]

[Total: 10]

Substrate Concentration +

Non-competitive inhibitor

Pa	ge 9		Syllabus	Paper	
		GCE A LEVEL – October/November 2013	9701	41	
(a)	elect	d.c. power supply glass sides rolyte amino acid mixture placed here filter paper soaked in buffer solut	ien		
	pov	ver supply (idea of complete circuit)			
	gel	ctrolyte/buffer solution /filter paper/absorbent paper nino acid) sample/mixture [centre of plate]		4 :	× [1
	·	,			[4
					1-
(b)	size cha	/ <i>two from:</i> e/ <i>M</i> _r (of the amino acid species) arge (on the amino acid species) aperature		2 :	× [1
	ton			_	_
					[2
(c)	ore	tio of the <u>concentration</u> of a solute in each of two (immiscib equilibrium constant representing the distribution of a solute PC = $[X]_a/[X]_b$ (at a constant temperature)		vents	[1
	0/ 1	$-C = [\Lambda]_a/[\Lambda]_b$ (at a constant temperature)			[1
					[1]
(d)	(i)	$K_{pc} = [Z \text{ in ether}]/[Z \text{ in } H_2O] - allow reverse ratio40 = (x/0.05)/((4-x)/0.5)$			[1
		= 3.2 g		ecf	[1
	(ii)	First extraction 40 = (x/0.025)/((4-x)/0.5) x = 2.67 g		ecf	[1
	(iii)	Second extraction: 1.33g remain in solution Second extraction 40 = (y/0.025)/((1.33-y)/0.5) y = 0.887 g			-
		mass extracted = 2.67 + 0.89 = 3.56/3.6 g		ecf	[1
					[4]
				[Total:	
					•••

Page	ge 10 Mark Scheme	Syllabus	Paper	
		GCE A LEVEL – October/November 2013	9701	41
B (a) (i	i) (nitr	ates are) soluble		[1
(i	ii) Ba ⁽²	⁽⁺⁾ and Pb ⁽²⁺⁾		[1]
	SO	(2-)		[1]
	BaC	$O_3/PbCO_3/CaSO_4$ are insoluble		[1]
				[4]
(b) (i	i) ferti	lisers/animal manure		[1]
(ii	i) was	hing powder/detergents/fertilisers/animal manure		[1]
(iii		vth/production of algae/weeds/plants utrophication		[1]
				[3]
(c) (i	i) any	one of:		
	250	$O_2 + O_2 \longrightarrow 2SO_3$ and $SO_3 + H_2O \longrightarrow H_2SO_4$		
	or S	$O_2 + NO_2 \longrightarrow SO_3 + NO$ and $SO_3 + H_2O \longrightarrow H_2SO_4$		

or $SO_2 + \frac{1}{2}O_2 + H_2O \longrightarrow H_2SO_4$	[1]

(ii) roasting sulfide ores/extraction of metals from sulfide ores [1]

[2]

[Total: 9]