MARK SCHEME for the October/November 2013 series

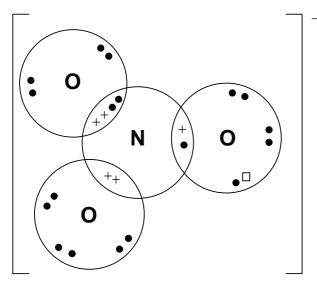
9701 CHEMISTRY

9701/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.


Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

1 (a)

dative bond to an oxygen using two N electrons	[1]
8 electrons around N in 1 double + 2 single bonds	[1]
a total of 24 electrons, including one, and only one " "	[1]
(the extra electron, " ", can be in a bond or a lone pair)	

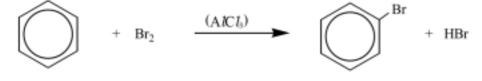
[3]

(b) (i)
$$2Mg(NO_3)_2 \longrightarrow 2MgO + 4NO_2 + O_2$$
 [1]

(ii)	(down the group) nitrates become more stable <i>or</i> are more difficult to decompose <i>or</i> need a higher temperature to decompose	[1]
	because there is less polarisation of the anion/nitrate ion/N–O bonds	[1]
	as radius of M^{2+} /metal ion increases <i>or</i> charge density of the cation decreases	[1]
		[4]

(c)
$$Cu + 4H^+ + 2NO_3^- \longrightarrow Cu^{2+} + 2NO_2 + 2H_2O$$

species [1] balancing [1]


[2]

[Total: 9]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43
2 (a) any tw	o from: molecules have negligible volume negligible intermolecular forces <i>or</i> particles are <i>or</i> to the walls of the container random motion		
	no loss of kinetic energy during collisions <i>or</i> ela elastic molecules)	astic collisions (N	01 2 × [1] [2]
(b) (i) lo	v temperature and high pressure	bo	oth required [1]
(ii) (a	low T) forces between particles are more important,		[1]
(a	high P) volume of molecules are significant		[1]
			[3 max 2]

(c) (i) endothermic; because the equilibrium moves to the right on heating *or* with increasing temperature *or* because bonds are broken during the reaction [1]

(ii) e.g. halogenation or Friedel-Crafts alkylation/acylation

reactants [1] products [1]

other possibilities: Cl_2 , I_2 , R-Cl, RCOCl etc.

[3]

[Total: 7]

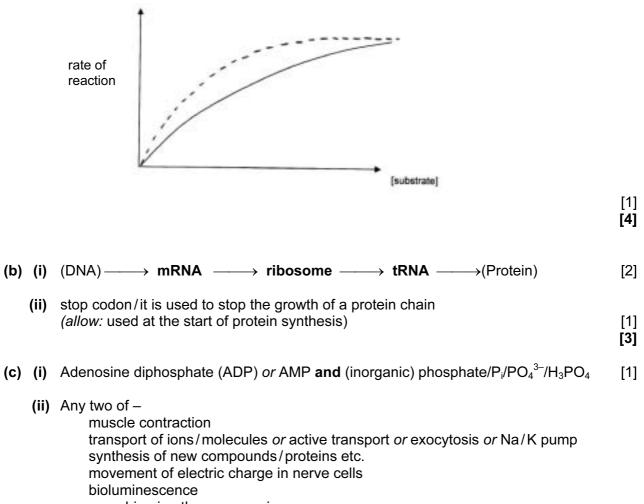
	Page 4				Mark Scheme		Syllabus	Paper
				GCE A LEVEL	– October/Novemb	per 2013	9701	43
3	(a)	(i)	CH₃I	$Br(g) \longrightarrow CH_3(g)$) + Br(g)			[1]
		(ii)	or A	$lCl_{3}(g) \longrightarrow {}^{1}/{}_{3}Al$ $lCl_{3}(g) \longrightarrow AlCl$ $l_{3}(g) \longrightarrow Al(g) \rightarrow$		<)		[2] [3]
								[0]
	(b)	(i)	due	-	from Cl_2 to I_2 ength <i>or</i> increase in ive orbital overlap <i>or</i>			[1] [1] pair [1]
		(ii)	to its	self)	s electronegative, (h gth is so short there			
			F)	pulsion between the	-			
			0/10	puision between the				[1]
								[4 max 3]
	(c)	(i)		hlorine: = E(H – H) + E(C <i>l</i> – (Cl) - 2E(H - Cl) = 4	36 + 242 – (2 - 184 kJ mol ^{−1}	× 431)	[2]
				odine:			~ 200)	[2]
			Δ H =	= E(H - H) + E(I - I)	- 2E(H - I) = 4 = -	- 11 kJ mol ⁻¹	× 299)	[1]
		(ii)	-		nermally stable down decreases (more th	• •		[1]) [1]
								[5]
	(d)	(i)		Na	0	Br		
	(4)	(')		15.2 / 23 ⇒ 0.661	31.8 / 16 1.99	53.0 / 79.9 0.663)	[1]
			÷	0.661⇒ 1.0	3.0	1.0	thua NoF	2-0 [1]
		<i>.</i>				-	thus NaE	BrO ₃ [1]
		(ii)	-	+ 6NaOH>Na Br₂ + 6OH⁻>B	aBrO₃ + 5NaBr + 3H rO₃ [–] + 5Br [–] + 3H₂O	₂ O		species [1] balancing [1] [4]
								[Total: 15]

	Pa	ige 5							Ма	ark S	chem	e					Syll	abı	IS		Paper	
					GC	CE A	LE	VEL	—	Octo	ober/N	Nov	vembe	er 2	2013		97	701		43		
4	(a)	(i)	Cart local			aphit	e)	has	d	deloc	alised	l e	electro	ns	whereas	5	silico	n's	eleo	ctrons	s are	[1]
		(ii)											d/mob ucture	oile	electrons	5 W	herea	as (germ	aniur	n has	[1] [2]
	(b)	(i)	2Pb	O ₂		$\rightarrow 2$	2Pb	0+	O ₂	2												[1]
		(ii)	PbO) ₂ +	4HC	<i>l</i> —		→ Pt	oCi	l ₂ + (C <i>l</i> ₂ + 2	$2H_2$	<u>2</u> 0									[1]
		(iii)	SnO) + 2	2NaC	ЭН —		→ ľ	٧a	₂ SnC	D ₂ + H	₂ 0										[1]
		(iv)	GeC	¢l₄ +	2H ₂	<u>2</u> 0 —		→ C	GeC	O ₂ +	4HC1											[1] [4]
																				[Tot	tal: 6]	

	Page 6	6		Mark Schen		Syllabus	Paper
			GCE A LEV	EL – October/	November 2013	9701	43
5	(a) (i)	Br ₂ (a elect 3B	trophilic substitutio	Br	(+ 3 HBr)		[1] [1]
							[1]
	(ii)	elect	pecial conditions trophilic addition	∼→ ^{Br}			[1] [1]
		Br	2		Illow bromohydrin <i>or</i> d f Br ₂ (aq) has been used		
							product [1]
	(iii)		/UV <i>or</i> heat) radical substituti				[1] [1]
		Br;		$\int^{Br} \left(+ HBr \right)$			
			nced equation in (nced equation in (product [1] [1] [1]
						[1	1 max 10]
	(b) (i)						
				OH O O	CH ₃ CO ₂ H		
		C	;	D	E		
					3 correct structure	es (can be in an	y order) 3 × [1]
	(ii)		lts of tests: with 2,4–DNPH:	C and D			[1]
			with I₂ + OH⁻: with NaOH:	D only D and E			[1] [1]
		(N.B	. letters may be d	ifferent – must	refer to the candidate	's formulae)	[6]
							[Total: 16]

	Page 7			Mark Scheme	Syllabus	Paper	
			GCE A LE	VEL – October/Novemb	er 2013	9701	43
6	(a)	A (Brons	ted-Lowry) acid	is a proton donor.			[1] [1]
	(b)	H	ο H H δ+ δ+ ο ο ο ο ο ο ο ο ο ο ο ο ο	н Н ••••••••••••••••••••••••••••••••••••	H H H H H H H H H H H H H H H H H H H	Н	
		lone a H-	pair (on oxyge bond	lecule in the right orientat en in H ₂ O <i>or –</i> CO ₂ H <i>or</i> least once (at each end c	a on nitrogen)		[1]
		(ii) + H ₃ N-	CH ₂ CO ₂	_			[1] [5]
	(c)	allow eith	her $S_N 1$ or $S_N 2$ (or CO_2^-) CO_2H δ^+ C_1 δ^-	$\begin{array}{c} CO_2H \\ (+) \\ H_3N \\ H_3C \\ H \end{array} \right) + NH_3$	CH ₃ ↓ -H ⁺ CO ₂ H	+ CF	
		any three	curly arrow curly arrow	shown in C–C l w from lone pair on NH ₃ w from C–C l bond to C l ate transition state or of arge			S _N 1, with [3] [3]
	(d)	lysine @ aspartic	pH 1: acid @ pH 12:	$^{+}NH_{3}(CH_{2})_{4}CH(NH_{3}^{+})CO_{2}CO_{2}CCH_{2}CH(NH_{2})CO_{2}^{-}$			[1] [1] [2]

Pa	Page 8		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2013	9701	43
(e)	(i)	6 (si	x)		[1]
	(ii)	eithe or	er H ₂ NCH(CH ₃)CO–NHCH(CH ₂ OH)CO ₂ H H ₂ NCH(CH ₂ OH)CO–NHCH(CH ₃)CO ₂ H		[2] [3]
(f)	(i)		pounds have the same structural formula but different (spatial) arrangement/position <i>or</i> orientation	of atoms in space	[1]
	(ii)	J			[1]
	(iii)	H ₂ N	H CH ₃		
		HO	OU		[1] [3]
					[Total: 17]


Page 9	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

Section B

7	(a)	(i)	Metals such as Hg, Ag, Cd, Pb, Cu (identified – NOT just "heavy metals")	
			(allow names, atomic symbols or ions, names or formulae of salts $- e.g. Pb(NO_3)_2$)	
			<i>or</i> penicillin <i>or</i> organophosphorus insecticide etc.	[1]

(ii)	The ion/inhibitor binds to a part of the enzyme molecule away from the active site or to an allosteric site	[1]
	This changes the shape of the active site <i>or</i> denatures the enzyme OR	[1]
	the inhibitor forms a covalent/permanent bond with the active site	[1]
	blocking entry of the substrate	[1]

(iii)

non-shivering thermogenesis **DNA** synthesis/reproduction

2 × [1] [**3**]

[Total: 10]

Page 1		0	Mark Scheme	Syllabus	Paper			
			GCE A LEVEL – October/November 2013	9701	43			
8	(a) NM	IR an	d radiowaves (<i>or</i> VHF/UHF <i>or</i> 40 – 800 MHz)		[1] [1]			
	(b) NMR: protons have (nuclear) spin or (spinning) proton produces magnetic moment/field or two spin states or protons can align with or against an applied magnetic field							
	there is insufficient electron density/cloud around H atoms for X-ray crystallogra							
	(c) Sul	fur, b	ecause it has the highest electron density		[1] [1]			
	(d) (i)		$=\frac{100}{1.1} \times n$ $\frac{100 \times 0.15}{4.5 \times 1.1} = 3.03 = 3$	(calculation must	be shown) [1]			
		••	4.5×1.1					
	(ii)	the -	-OH peak (broad singlet) at δ 4.6		[1]			
	(iii)	3 (th	ree)		[1]			
	(iv)	whic	as peak at 11.7δ. h is due to –CO₂H s can only be formed by oxidising a <i>primary</i> alcohol.)		[1] [1]			
			has 4 peaks in its NMR spectrum, not 3 secondary alcohol with 3 carbons, two (methyl) gr		[1]			
		in a cher	the same [1]					
			nalysis of the splitting pattern in P : the peaks at δ 0.9 ach must be adjacent to a –CH ₂ – group. (hence –CH ₂ -		ets, [1] [1]			
	(v)		CH ₂ CO ₂ H (structure needed, not name)		[1] [6]			
					[Total: 10]			

	Page 1			Mark Scheme			Syllabus	Paper			
				GCE A LEVEL – October/November 2013			9701	43			
9	(a)	(i)	diam	nond and graphite				[1]			
		(ii)	any	three from							
		• •	-		graphite diam						
			colo	ur trical conductivity			parent/colourles onductor	S			
				Iness	0		non slippery				
			density			more	e dense than graphite				
			melting point		diamond Iower	highe	r				
							3 × [1]				
								[4]			
		_									
	(b)	Because each carbon is only bonded to 3 others <i>or</i> is unsaturated/doubly-bonded/sp ² <i>or</i> has 3 bonding locations									
		(NOT forms only 3 <i>bonds</i>)									
		Coo	₆₀ H ₆₀								
		060	100					[1] [2]			
	(c)) (i) Number of atoms carbon present = 0.001 × 6.02 × 10 ²³ / 12 = 5.02 × 10¹⁹				[1]					
		(ii) Number of hexagons present = $5.02 \times 10^{19} / 2 = 2.51 \times 10^{19}$									
		[1]									
	(iii) Graphene: Yes, since it has			ohene: Yes, since it ha	s free/delocalised/mobile electrons		ons	[1]			
			Buckminsterfullerene: No, (although there is delocalisation within each sphere								
			it consists of separate/simple/discrete molecules/spheres/particles, (so no delocalisation from one sphere to the next)								
					[1]						
		or electrons are trapped within each molecule/sphere									
								[Total: 10]			