CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Pa	age 2	2	Mark Scheme Syllabus	Pape	er :
			Cambridge International AS/A Level – October/November 2015 9702	21	
1	(a)		nperature rrent	B1 B1	[2]
		(al	low amount of substance, luminous intensity)		
	(b)	(i)	1. E = (stress/strain =) [force/area] / [extension/original length]		
			units of stress: kg m s ⁻² /m ² and no units for strain	B1	
			units of E : kg m ⁻¹ s ⁻²	A0	[1]
			2. units for <i>T</i> : s, <i>l</i> : m and <i>M</i> : kg		
			$K^2 = T^2 E/M l^3$ hence units: $s^2 kg m^{-1} s^{-2}/kg^3$ (= m^{-4})	C1	
			units of <i>K</i> : m ⁻²	A1	[2]
		(ii)	% uncertainty in $E = 4\%$ (for T^2) + 0.6% (for l^3) + 0.1% (for M) + 3% (for K^2) = 7.7%	В1	
			$E = [(1.48 \times 10^5)^2 \times 0.2068 \times (0.892)^3]/(0.45)^2$ = 1.588 \times 10 ¹⁰	C1	
			7.7% of $E = 1.22 \times 10^9$	C1	
			$E = (1.6 \pm 0.1) \times 10^{10} \mathrm{kg} \mathrm{m}^{-1} \mathrm{s}^{-2}$	A1	[4]
2	(a)	ps	= 10^{-12} (s) or $T = 4 \times 50 \times 10^{-12}$ (s)	В1	
		v =	$= f\lambda \text{ or } v = \lambda / T$	C1	
		λ	$= 3.0 \times 10^8 \times 4 \times 50 \times 10^{-12}$	C1	
			$= 0.06(0) \mathrm{m}$	A1	[4]
	(b)	15	$00 = 3.0 \times 10^8 \times 4 \times \text{time-base setting or } T = 5 \times 10^{-6} \text{s}$	C1	
		tim	ne-base setting = 1.3 (1.25) μs cm ⁻¹	A1	[2]
3	(a)	wc or	ork done is force × distance moved in direction of force		
		no	work done along PQ as no displacement/distance moved in direction of force	B1	
		wc for	ork done is same in vertical direction as same distance moved in direction of ce	B1	[2]

		(Cambridge International AS/A Level – October/November 2015 9702	21	
	(b)	(i)	at maximum height $t = 1.5$ (s) or $s = \frac{1}{2}(u + v)t$, $s = 11$ m and $t = 1.5$ s	C1	
			$V_{\rm v} = 0 + 9.81 \times 1.5$ $V_{\rm v} = (11 \times 2) / 1.5$		
			$= 15 (14.7) \mathrm{m s^{-1}}$	A1	[2]
		(ii)	straight line from (0,0) to (3.00, 25.5)	B1	[1]
		(iii)	at maximum height $V_h = 25.5/3 (= 8.5 \mathrm{m s^{-1}})$	B1	
			ratio = $mgh/\frac{1}{2}mv^2$	C1	
			$= (2 \times 9.81 \times 11.0)/(8.5)^2$		
			= 3.0 (2.99)	A1	[3]
		(iv)	deceleration is greater/resultant force (weight and friction force) is greater	M1	
			time is less	A1	[2]
4	(a)	der	nsity = mass/volume	C1	
		ma	ss = $7900 \times 4.5 \times 24 \times 10^{-6} = 0.85 (0.853) \text{kg}$	M1	[2]
	(b)	pre	ssure = force/area	C1	
		ford	ce = Wcos40°	C1	
		pre	ssure = $(0.85 \times 9.81 \cos 40^{\circ})/24 \times 10^{-4}$		
			= $2.7 (2.66) \times 10^3 Pa$	A1	[3]
	(c)	F=	= ma	C1	
		Ws	sin 40° – f = ma	C1	
		0.8	$5 \times 9.81 \times \sin 40^{\circ} - f = 0.85 \times 3.8$		
		f (=	5.36 - 3.23) = 2.1 N [5.38 - 3.242 if 0.8532 kg is used for the mass]	A1	[3]

Mark Scheme

Syllabus

Paper

Page 3

age 4		Mark Scheme	Syllabus		
	(Cambridge International AS/A Level – October/November 2015	9702	21	
(a)		• •	ıde	B1	
	•			B1	[2]
(b)	(i)	wavelength 1.2 m (zero displacement at 0.0, 0.60 m, 1.2 m, 1.8 m, 2	.4 m)		
		either peaks at 0.30 m and 1.5 m and troughs at 0.90 m and 2.1 m or vice versa (but not both)		B1	
		maximum amplitude 5.0 mm		B1	[2]
	(ii)	180° or π rad		A1	[1]
	(iii)	at $t = 0$ particle has kinetic energy as particle is moving		B1	
		at $t=5.0\mathrm{ms}$ no kinetic energy as particle is stationary so decrease in kinetic energy (between $t=0$ and $t=5.0\mathrm{ms}$)		B1	[2]
(a)	ene	ergy converted from chemical to electrical per unit charge		B1	[1]
(b)	(i)	current = $E/(R+r)$		C1	
		= 6.0/(16 + 0.5) = 0.36 (0.364) A		A1	[2]
	(ii)	terminal p.d. = $(0.36 \times 16) = 5.8 \text{ V}$ or $(6 - 0.36 \times 0.5)$ = 5.8 V		A1	[1]
(c)	(i)	use of $R = \rho l/A$ or proportionality with length and inverse proportionality with area or d^2		C1	
		$d/2$ and $l/2$ gives resistance of Z = $2R_Y$ = $24(\Omega)$		C1	
		R = resistance of parallel combination = $[1/24 + 1/12]^{-1}$ = 8(.0)(Ω)		A1	[3]
	(ii)	resistance of circuit less therefore current larger		B1	
		lost volts greater therefore terminal p.d. less		В1	[2]
(d)	pο\	wer = $I^2 R$ or VI or V^2/R		C1	
	cur	rent in second circuit (= 6.0/12.5) = 0.48(A)		B1	
	rati	o = $[(0.36)^2 \times 16] / [(0.48)^2 \times 12] = 0.75$ [0.77 if full s.f. used]		B1	[3]
	(a) (b) (c)	(a) prosta (b) (i) (a) (ii) (b) (ii) (c) (i) (iii) (d) pover currents	 (a) progressive: all particles have same amplitude stationary: no nodes or antinodes or maximum to minimum/zero amplitude progressive: adjacent particles are not in phase stationary: waves particles are in phase (between adjacent nodes) (b) (i) wavelength 1.2m (zero displacement at 0.0, 0.60 m, 1.2m, 1.8m, 2 either peaks at 0.30 m and 1.5 m and troughs at 0.90 m and 2.1 m or vice versa (but not both) maximum amplitude 5.0 mm (ii) 180° or π rad (iii) at t = 0 particle has kinetic energy as particle is moving at t = 5.0 ms no kinetic energy as particle is stationary so decrease in kinetic energy (between t = 0 and t = 5.0 ms) (a) energy converted from chemical to electrical per unit charge (b) (i) current = E/(R+r) = 6.0/(16 + 0.5) = 0.36 (0.364)A (ii) terminal p.d. = (0.36 × 16) = 5.8 V or (6 – 0.36 × 0.5) = 5.8 V (c) (i) use of R = ρl/A or proportionality with length and inverse proportionality with area or d² d/2 and l/2 gives resistance of Z = 2R_Y = 24 (Ω) R = resistance of parallel combination = [1/24 + 1/12]⁻¹ = 8(.0) (Ω) (ii) resistance of circuit less therefore current larger 	 (a) progressive: all particles have same amplitude stationary: no nodes or antinodes or maximum to minimum/zero amplitude progressive: adjacent particles are not in phase stationary: waves particles are in phase (between adjacent nodes) (b) (i) wavelength 1.2m (zero displacement at 0.0, 0.60 m, 1.2m, 1.8 m, 2.4 m) either peaks at 0.30 m and 1.5 m and troughs at 0.90 m and 2.1 m or vice versa (but not both) maximum amplitude 5.0 mm (ii) 180° or π rad (iii) at t = 0 particle has kinetic energy as particle is moving at t = 5.0 ms no kinetic energy (between t = 0 and t = 5.0 ms) (a) energy converted from chemical to electrical per unit charge (b) (i) current = E/(R + t) = 6.0/(16 + 0.5) = 0.36 (0.364)A (ii) terminal p.d. = (0.36 × 16) = 5.8 V or (6 − 0.36 × 0.5) = 5.8 V (c) (i) use of R = ρl/A or proportionality with length and inverse proportionality with area or d² d/2 and l/2 gives resistance of Z = 2R_Y = 24 (Ω) R = resistance of parallel combination = [1/24 + 1/12]⁻¹ = 8(.0) (Ω) (ii) resistance of circuit less therefore current larger lost volts greater therefore terminal p.d. less (d) power = I²R or VI or V²/R current in second circuit (= 6.0/12.5) = 0.48 (A) 	Cambridge International AS/A Level – October/November 2015 9702 21 (a) progressive: all particles have same amplitude stationary: no nodes or antinodes or maximum to minimum/zero amplitude. The progressive: adjacent particles are not in phase stationary: waves particles are in phase (between adjacent nodes) B1 (b) (i) wavelength 1.2m (zero displacement at 0.0, 0.60 m, 1.2m, 1.8m, 2.4m) either peaks at 0.30 m and 1.5 m and troughs at 0.90 m and 2.1 m or vice versa (but not both) B1 (ii) 180° or π rad A1 (iii) at $t = 0$ particle has kinetic energy as particle is moving at $t = 5.0$ ms no kinetic energy as particle is stationary so decrease in kinetic energy (between $t = 0$ and $t = 5.0$ ms) B1 (a) energy converted from chemical to electrical per unit charge B1 (b) (i) current $= E/(R + r)$ C1 $= 6.0/(16 + 0.5)$ A1 (ii) terminal p.d. $= (0.36 \times 16) = 5.8 \text{V}$ or $(6 - 0.36 \times 0.5)$ A1 (c) (i) use of $R = \rho I/A$ or proportionality with length and inverse proportionality with area or d^2 C1 $d/2$ and $I/2$ gives resistance of $Z = 2R_Y = 24(\Omega)$ C1 R = resistance of parallel combination = $[1/24 + 1/12]^{-1}$ B1 (b) power = I^2R or VI or V^2/R C1 (c) power = I^2R or VI or V^2/R C1 (d) power = I^2R or VI or V^2/R C1

Pa	ige 5	5	Mark Scheme	Syllabus	Pap	er
			Cambridge International AS/A Level – October/November 2015	9702	21	
7	(a)	(i)	curved path towards negative (-) plate (right-hand side)		B1	[1]
		(ii)	range of $\alpha\text{-particle}$ is only few cm in air/loss of energy of the $\alpha\text{-particle}$ to collision with air molecules/ionisation of the air molecules	icles due	B1	[1]
	(iii)	$V = E \times d$		C1	
			= $140 \times 10^6 \times 12 \times 10^{-3} = 1.7 (1.68) \text{MV}$		A1	[2]
	(b)	βh	ave opposite charge to $lpha$ therefore deflection in opposite direction		B1	
		βh	as a range of velocities/energies hence number of different deflectio	ns	B1	
		βh or	ave less mass or q/m is larger hence deflection is greater			
			rith (very) high speed (may) have less deflection		B1	[3]

(c)

emitted particle	change in Z	change in A	
α-particle	-2 -4		
β-particle	+1	0	

A1 [1]