CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9702	41
	Section A		
l (a) (i) gravitational force provides/is the centripetal force		B1

(a) (i) gravitational force provides/is the centripetal force

$$GMm_S/x^2 = m_S v^2/x$$
 (allow x or r, allow m or m_S)

$$E_{\rm K} = \frac{1}{2}m_{\rm S}v^2$$
 and clear algebra leading to $E_{\rm K} = GMm_{\rm S}/2x$ A1 [3]

(ii)
$$E_P = -GMm_S/x$$
 (sign essential) B1 [1]

(iii)
$$E_T = E_K + E_P$$

= $GMm_S/2x - GMm_S/x$ C1
= $-GMm_S/2x$ (allow ECF from (a)(ii)) A1 [2]

(for answers in (b) allow ECF from (a)(iii))

2 (a) obeys the equation
$$pV = nRT$$
 or $pV/T = constant$ M1 all symbols explained; T in kelvin/thermodynamic temperature A1 [2]

(ii)
$$< c^2 > \infty$$
 T or equivalent C1
 $< c^2 > = (353/305) \times 1.9 \times 10^6$ C1
 $c_{\text{r.m.s.}} = 1480 \, \text{m s}^{-1}$ A1 [3]

Pa	age (Mark Scheme Syllab Cambridge International AS/A Level – October/November 2015 9702		Pape 41)r
	(b)	(i)	idea of resonance maximum amplitude at natural frequency frequency = 2.1 Hz (allow 2.08 to 2.12 Hz)	, 	B1 B1 B1 B1	[3]
		(ii)	peak not very sharp/amplitude not infinite so frictional forces are present	I	B1	[1]
	(c)		= ωx_0 = $2\pi \times 2.1 \times 4.7 \times 10^{-2}$ (allow ECF from (b)(i)) = $0.62 \mathrm{m s^{-1}}$		C1 A1	[2]
5	(a)	(i)	force proportional to the product of the two/point charges and inversely proportional to the square of their separation		B1 B1	[2]
		(ii)	1. force radially away from sphere/to right/to east	!	B1	[1]
			2. (maximum) at/on surface of sphere $or x = r$!	B1	[1]
			3. $F \propto 1/x^2 \text{ or } F = q_1 q_2/(4\pi \varepsilon_0 x^2)$	(C1	
			ratio = 16	,	A1	[2]
	(b)	E=	$= q/(4\pi\varepsilon_0 x^2) \text{ or } E \propto q$	(C1	
		ma	eximum charge = $(2.0/1.5) \times 6.0 \times 10^{-7}$ = 8.0×10^{-7} C	(C1	
		ade	ditional charge = 2.0 × 10 ⁻⁷ C	,	A1	[3]
6	(a)	(i)	force = mg along the direction of the field/of the motion		М1 А1	[2]
		(ii)	no force	ļ	B1	[1]
	(b)	(i)	force due to <i>E</i> -field downwards so force due to <i>B</i> -field upwards into the plane of the paper		B1 B1	[2]
		(ii)	force due to magnetic field = Bqv force due to electric field = Eq (use of F_B and F_E not explained, allow 1/2)		B1 B1	
			forces are equal (and opposite) so $Bv = E$ or $Eq = Bqv$ so $E = Bv$	1	B1	[3]
	(c)		etch: smooth curved path upward' direction		M1 A1	[2]
7	(a)	for	nimum frequency of e.m. radiation/a photon (not "light") emission of electrons from a surface ference to light/UV rather than e.m. radiation, allow 1/2)		M1 A1	[2]

Pa	age 4		Mark Scheme	Syllabus	Pap	er
			Cambridge International AS/A Level – October/November 2015	9702	41	
	(b)		$_{ m X}$ corresponds to electron emitted from surface ctron (below surface) requires energy to bring it to surface, so less t	han E _{MAX}	B1 B1	[2]
	(c)	(i)	$1/\lambda_0 = 1.85 \times 10^6$ (allow 1.82 to 1.88)		C1	
		(ii)	$f_0 = c/\lambda_0$ = 3.00 × 10 ⁸ × 1.85 × 10 ⁶ = 5.55 × 10 ¹⁴ Hz $\Phi = hf_0$		A1	[2]
			= $6.63 \times 10^{-34} \times 5.55 \times 10^{14}$ (allow ECF from (c)(i)) = 3.68×10^{-19} J		C1 A1	[2]
	(d)		tch: straight line with same gradient rcept between 1.0 and 1.5		M1 A1	[2]
8	(a)	nuc	leus: <u>small</u> central part/core of an atom leon: proton or a neutron ticle contained within a nucleus		B1 B1 B1	[3]
	(b)	(i)	1. decay constant = $\ln 2/(3.8 \times 24 \times 3600)$ = $2.1 \times 10^{-6} \text{s}^{-1}$		C1 A1	[2]
			2. $A = \lambda N$ $97 = 2.1 \times 10^{-6} \times N$ $N = 4.6 \times 10^{7}$		C1 A1	[2]
		(ii)	$1.0m^3$ contains (6.02 \times $10^{23})/(2.5\times10^{-2})$ air molecules		C1	
			ratio = $(4.6 \times 10^7 \times 2.5 \times 10^{-2})/(6.02 \times 10^{23})$ = 1.9×10^{-18}		A1	[2]

	Cambridge International AS/A Level – October/November 2015 9702	41	
	Section B		
(a)	(i) (+) 3.0 V	B1	[1]
	(ii) potential = 6.0 × {2.0 / (2.0 + 2.8)} = 2.5 V	C1 A1	[2]
((iii) potential = 6.0 × {2.0 / (2.0 + 1.8)} = 3.2 V	A1	[1]
(b)	at 10 °C, $V_A > V_B$ V_{OUT} is -9.0 V (allow "negative saturation")	M1 A1	
	at 20 °C, V_{OUT} is +9.0 V (if 20 °C considered initially, mark as M1,A1,B1)	B1	
	sudden switch (from -9 V to $+9 \text{ V}$) when $V_A = V_B$	B1	[4]
(a)	sharpness: clarity of edges/resolution (of image) contrast: difference in degree of blackening (of structures)	B1 B1	[2]
(b)		B1	
	or electrons have (kinetic) energy of 80 keV	B1	[2]
	(ii) $I_{T}/I = e^{-3.0 \times 1.4}$ = 0.015	C1 A1	[2]
(c)		B1 M1	
	so good contrast	A1	[3]
(a)	frequency of carrier wave varies in synchrony with the displacement of the signal/information wave	M1 A1	[2]
(b)	(i) 5.0 V	A1	[1]
	(ii) 720 kHz	A1	[1]
	(b) (a) (c)	Section B (a) (i) (+) 3.0 V (ii) potential = 6.0 × {2.0 / (2.0 + 2.8)} = 2.5 V (iii) potential = 6.0 × {2.0 / (2.0 + 1.8)} = 3.2 V (b) at 10 °C, V _A > V _B V _{OuT} is -9.0 V (allow "negative saturation") at 20 °C, V _{OuT} is +9.0 V (if 20 °C considered initially, mark as M1,A1,B1) sudden switch (from –9 V to +9 V) when V _A = V _B (a) sharpness: clarity of edges/resolution (of image) contrast: difference in degree of blackening (of structures) (b) (i) X-rays produced when (high speed) electrons hit target/anode either electrons have been accelerated through 80 kV or electrons have (kinetic) energy of 80 keV (ii) I _T /I = e ^{-3.0 × 1.4} = 0.015 (c) for good contrast, μx or e ^{μx} or e ^{-μx} must be very different μx or e ^{μx} or e ^{-μx} for bone and muscle will be different than that for muscle so good contrast (a) frequency of carrier wave varies in synchrony with the displacement of the signal/information wave	Section B (a) (i) (+) 3.0V (ii) potential = $6.0 \times \{2.0 / (2.0 + 2.8)\}$ = 2.5V (iii) potential = $6.0 \times \{2.0 / (2.0 + 1.8)\}$ = 3.2V (b) at 10°C , $V_A > V_B$ $V_{OUT} \text{ is } -9.0 \text{V (allow "negative saturation")}$ A1 at 20°C , V_{OUT} is $+9.0 \text{V}$ (if $20^{\circ}\text{C considered initially, mark as } M1, A1, B1$) sudden switch (from $-9\text{V to } +9\text{V}$) when $V_A = V_B$ B1 (a) sharpness: clarity of edges/resolution (of image) contrast: difference in degree of blackening (of structures) B1 (b) (i) X-rays produced when (high speed) electrons hit target/anode either electrons have been accelerated through 80 kV or electrons have (kinetic) energy of 80 keV B1 (c) for good contrast, μx or $e^{-\mu x}$ or $e^{-\mu x}$ must be very different μx or $e^{-\mu x}$ for bone and muscle will be different than that for muscle so good contrast (a) frequency of carrier wave varies in synchrony with the displacement of the signal/information wave A1

Mark Scheme

Syllabus

Paper

[1]

[1]

Α1

A1

Page 5

(iii) 780 kHz

(iv) 7500

Page 6		6	Mark Scheme	Syllabus	Pap	er
			Cambridge International AS/A Level – October/November 2015	9702	41	
12	(a)	(i)	(gradual) loss of power/intensity/amplitude (not "signal")		B1	[1]
		(ii)	e.g. noise can be eliminated (not "there is no noise") because pulses can be regenerated		M1 A1	
			e.g. much greater data handling/carrying capacity because many messages can be carried at the same time/grea	ater	M1	
			bandwidth	itoi	A1	
			e.g. more secure because it can be encrypted		(M1) (A1)	
			e.g. error checking because extra information/parity bit can be added		(M1) (A1)	[4]
			(allow any two sensible suggestions with 'state' M1 and 'explain' A1	1)		
	(b)	atte	enuation = 10 lg (145/29) (= 7.0)		C1	
		atte	enuation per unit length = 7.0/36 = 0.19 dB km ⁻¹		A1	[2]