MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		2 Mark Scheme Sylla	Syllabus		Paper	
		Cambridge International AS/A Level – October/November 2015 970)2	43		
1	(a)	(gravitational) force proportional to product of masses and inversely proportional to square of separation <i>either</i> point masses <i>or</i> particles <i>or</i> 'size' ≪ separation		M1 A1	[2]	
	(b)	gravitational force provides the centripetal force		B1		
		either $GMm/x^2 = mx\omega^2$ or mv^2/x either $\omega = 2\pi/T$ or $v = 2\pi x/T$ and working to $GM = 4\pi^2 x^3/T^2$		M1 A1	[3]	
	(c)	<i>either</i> use of gradient of graph <i>or</i> line through origin so can use single poin <i>or</i> line shown extrapolated to origin	ıt	B1		
		gradient = $(4.5 \times 10^{14})/0.35$ 6.67 × 10 ⁻¹¹ × <i>M</i> = $4\pi^2$ × $(4.5 \times 10^{14} \times 10^9)/(0.35 \times \{24 \times 3600\}^2)$				
		correct conversion for km ³ and power of 10 correct conversion for day ² $M = 1.02 \times 10^{26}$ kg		C1 C1 A1	[4]	
2	(a)	total volume of molecules negligible compared to that of containing vessel no intermolecular forces molecules in random motion time of collision small compared with the time between collisions large number of molecules		DO	[0]	
		any two		B2	[2]	
	(b)	in a real gas there is a range of velocities <i>or</i> must take the average of v^2		B1	[1]	
	(c)	(i) either $p = \frac{1}{3}\rho < c^2 >$				
		or $1.0 \times 10^5 = \frac{1}{3} \times 1.2 \times \langle c^2 \rangle$		C1		
		$< c^2 > = 2.5 \times 10^5$ $c_{r.m.s.} = 500 \mathrm{m s^{-1}}$		C1 A1	[3]	
		(ii) $T \propto \langle c^2 \rangle$		C1		
		$< c^{2} > = 2.5 \times 10^{5} \times 480/300$ = 4.0 × 10 ⁵ m ² s ⁻² (allow ECF from (c)(i))		A1	[2]	
3	(a)	same temperature no (net) transfer of thermal energy (between the bodies)		B1 B1	[2]	
	(b)	(i) 41.3 K		B1	[1]	
		(ii) 330.4 K		B1	[1]	

Page 3	Mark Scheme		Paper	
	Cambridge International AS/A Level – October/November 2015	9702	43	

<i>∆E</i> κ =	$\frac{3}{2}$ × 1.9 × 60		
	E contraction of the second se	C1	
work do	one = $p \Delta V$ = 1.2 × 10 ⁵ × 950 × 10 ⁻⁶ = 114 J	C1 C1	
therma	l energy = 114 + 171 = 285 (290) J	A1	[4]
acceler	ation/force proportional to distance from a fixed point or displacement	M1	
either or	acceleration/force and displacement in opposite directions acceleration/force (always) directed towards a fixed point/mean position/equilibrium position	A1	[2]
h ho g = I h imes 790	Mg/A $0 \times 4.9 \times 10^{-4} = 70 \times 10^{-3}$ leading to $h = 0.18$ m or 18 cm	B1 A1	[2]
(i) 1.	$\omega^2 = (790 \times 4.9 \times 10^{-4} \times 9.81) / (70 \times 10^{-3}) = 54.25$	C1	
	ω = 7.37 (rad s ⁻¹) period (= $2\pi / \omega$) = 0.85 s	C1	
	$t_1 = 0.43 \text{ s}$	A1	[3]
2.	$t_3 = 1.28 \text{ s} (allow 2 \text{ s.f.})$	A1	[1]
(ii) ene	ergy of peak = $\frac{1}{2}M\omega^2 x_0^2$	B1	
cha	ange = $\frac{1}{2} \times 70 \times 10^{-3} \times 54.25 \{(2.2 \times 10^{-2})^2 - (1.0 \times 10^{-2})^2\}$ = 7.3 × 10 ⁻⁴ J	C1 A1	[3]
	$=$ work do therma acceler either or $h\rho g = h$ $h \times 7900$ (i) 1. 2. (ii) end	= 114 J thermal energy = 114 + 171 = 285 (290) J acceleration/force proportional to distance from a fixed point or displacement <i>either</i> acceleration/force and displacement in opposite directions or acceleration/force (always) directed towards a fixed point/mean position/equilibrium position $h\rho g = Mg/A$ $h \times 790 \times 4.9 \times 10^{-4} = 70 \times 10^{-3}$ leading to $h = 0.18$ m or 18 cm (i) 1. $\omega^2 = (790 \times 4.9 \times 10^{-4} \times 9.81)/(70 \times 10^{-3})$ = 54.25 $\omega = 7.37 (rad s^{-1})$ period $(= 2\pi/\omega) = 0.85$ s $t_1 = 0.43$ s 2. $t_3 = 1.28$ s (<i>allow 2 s.f.</i>) (ii) energy of peak = $\frac{1}{2}M\omega^2 x_0^2$ change = $\frac{1}{2} \times 70 \times 10^{-3} \times 54.25 \{(2.2 \times 10^{-2})^2 - (1.0 \times 10^{-2})^2\}$	$= 171 J$ C1 work done $= p\Delta V$ $= 1.2 \times 10^5 \times 950 \times 10^{-6}$ C1 $= 114 J$ C1 thermal energy = 114 + 171 $= 285 (290) J$ A1 acceleration/force proportional to distance from a fixed point or displacement either acceleration/force and displacement in opposite directions or acceleration/force (always) directed towards a fixed point/mean position/equilibrium position A1 $h\rho g = Mg/A$ $h \times 790 \times 4.9 \times 10^{-4} = 70 \times 10^{-3}$ leading to $h = 0.18 \text{ m}$ or 18 cm A1 (i) 1. $\omega^2 = (790 \times 4.9 \times 10^{-4} \times 9.81)/(70 \times 10^{-3})$ $= 54.25$ $\omega = 7.37 (rad s^{-1})$ period ($= 2\pi/\omega$) = 0.85 s $t_1 = 0.43 \text{ s}$ A1 (i) energy of peak = $\frac{1}{2}M\omega^2 x_0^2$ C1 (ii) energy of peak = $\frac{1}{2}M\omega^2 x_0^2$ C1

4

Page 4			Mark	Syllabus	Paper		
		Car	Cambridge International AS/A Level – October/November 2015 9		9702	43	
5	(a)	no (res	es in metal do not move sultant) force on charges so r 1/2 for "no field inside sphere			B1 B1	[2]
	(b)	either	average field strength	= $\frac{1}{2}$ (28 + 54) NC ⁻¹		C1	
			average force	= $8.5 \times 10^{-9} \times \frac{1}{2} (28 + 54)$ = $3.49 \times 10^{-7} N$		C1	
			change in potential energy	= $3.49 \times 10^{-7} \times 2.0 \times 10^{-2}$ = 7.0×10^{-9} J (allow 1 s.f.)		A1	
		(allow	range 54 ± 1)				
		or	(for a point charge) $V = Ex$			(C1)	
			$\Delta V = (54 \times 5.0 \times 10^{-2}) - (28)$	imes 7.0 $ imes$ 10 ⁻²)		(C1)	
				= $8.5 \times 10^{-9} \times (2.70 - 1.96)$ = 6.3×10^{-9} J (allow 1 s.f.)		(A1)	
		(allow	range 54 ± 1)				
		or	ΔV is area under curve $\Delta V = 0.74 V$			(C1) (C1)	
			change in potential energy	= $8.5 \times 10^{-9} \times 0.74$ = 6.3×10^{-9} J (allow 1 s.f.)		(A1)	[3]
		(allow	range 0.70 to 0.84)				
6	(a)	magne	etic fields are equal in magnit etic fields are opposite in dire superpose/add/cancel to give			M1 M1 A1	[3]
	(b)	<i>or</i> field chang (by Fa	auses increase in magnetic fl d induced in core ing flux threads/cuts the turns raday's law) an e.m.f. is indu nz's law, this e.m.f. opposes t	ced in the solenoid	core	B1 M1 A1 A1	[4]
7	(a)	(i) V ₀	₀(= 14 √2) = 19.8 (20) V			A1	[1]
		(ii) <i>w</i>	$(= 2\pi \times 750) = 4700 \text{rad} \text{s}^{-1}$			A1	[1]
	(b)	large amount of charge required to charge capacitor					
		capacitor would charge and discharge rapidly/in a very short time or capacitor would charge and discharge 750/1500 times per second					
		I = Q/t, so large current					[3]

Page 5		5	Mark Scheme	Syllabus	Pap	er
	- J -		Cambridge International AS/A Level – October/November 2015	9702	43	
8	(a)		$\lambda = \Phi + E_{MAX}$ Planck constant, <i>c</i> = speed of light/e.m. radiation		M1 A1	[2]
	(b)	(i)	gradient of line is <i>hc h</i> and <i>c</i> are both constants		M1 A1	[2]
		(ii)	$ \Phi = 2.28 \times 1.6 \times 10^{-19} $ = 3.65 × 10 ⁻¹⁹ (J)		C1	
			$hc/\lambda_0 = 3.65 \times 10^{-19}$			
			$\lambda_0 = (6.63 \times 10^{-34} \times 3.0 \times 10^8) / (3.65 \times 10^{-19}) = 5.45 \times 10^{-7} \mathrm{m}$		C1 A1	[3]
9	(a)	or e (or	ergy required to separate the nucleons (in a nucleus) energy required to separate the protons and neutrons in a nucleus energy released when nucleons combine (to form a nucleus)/energy en protons and neutrons combine to form a nucleus)	released	M1	
			ner completely or to infinity her free protons and neutrons or from infinity)		A1	[2]
	(b)	(i)	<i>either</i> different forms of same element <i>or</i> nuclei having same numb protons with different numbers of neutrons	er of	M1 A1	[2]
		(ii)	1784 MeV (<i>accept min. 3 s.f.</i>) 7.57 MeV		A1 A1	[2]
	(c)	(i)	$\lambda = \ln 2/(7.1 \times 10^8 \times 365 \times 24 \times 3600) = 3.1 \times 10^{-17} s^{-1}$		B1	[1]
		(ii)	$A = \lambda N 5000 = 3.1 \times 10^{-17} \times N N = 1.61 \times 10^{20}$		C1	
			mass = $235 \times (1.61 \times 10^{20}) / (6.02 \times 10^{23})$ = 0.063 g (accept min. 2 s.f.)		C1 A1	[3]

Pa	Page 6 Mark Scheme Syllabus						
	<u> </u>		Cambridge International AS/A Level – October/November 2015	9702	Pap 43		
			Section B				
10	(a)	sep dio	rect LED symbol parately connected between V_{OUT} and earth with opposite polarities de B 'pointing' from V_{OUT} to earth nore protective resistors)		B1 M1 A1	[3]	
	(b)	dio rela swi (<i>if a</i>	de in V _{OUT} line de 'pointing' towards V _{OUT} from earth ay coil connected between V _{OUT} and earth tch connected across lamp a diode is placed across the relay it must point down otherwise max. e diode but wrong direction max. 3/4)	2/4;	M1 A1 M1 A1	[4]	
11	(a)		. scattering (in metal) non-parallel beam (not just "A closer than B") reflection (from metal) diffraction in the metal/lattice <i>two</i>		B2	[2]	
	(b)	(i)	1. ratio = $e^{\mu x}$ = $exp(0.27 \times 4.0)$ = 2.94 (2.9)		C1 A1	[2]	
			2. ratio = $\exp(0.27 \times 2.5) \times \exp(3.0 \times 1.5)$ = 1.96 × 90 = 177 (180)		C1 A1	[2]	
			(do not penalise unit error more than once)				
		(ii)	each ratio gives measure of transmission ratios (in (i)) very different so good contrast		B1 B1	[2]	
12	(a)	(i)	serial-to-parallel converter		B1	[1]	
		(ii)	digital-to-analogue converter or DAC		B1	[1]	
		(iii)	(audio) amplifier or AF amplifier		B1	[1]	
	(b)	(i)	4		A1	[1]	
		(ii)	1011		A1	[1]	
	(c)	0, 8 and ser	rect levels at 0.25 ms intervals 8, 11, 10, 15 1 7, 4 ies of steps, each of depth 0.25 ms age levels shown in correct intervals		A1 A1 M1 A1	[4]	

Page 7		ge 7 Mark Schem		Mark Scheme	Syllabus	Pape	ər
			Cambridge International AS/A Level – October/November 2015 9702				
13	(a)	ad	vantage:	e.g. shorter time delay greater coverage over a long time		B1	
		dis	advantage:	e.g. satellite needs to be tracked more satellites for (continuous) coverage/communi (any sensible suggestions)	cation	B1	[2]
	(b)	(i)	frequencies	s linking Earth with satellite		B1	
				olink frequency } ownlink frequency		B1	[2]
		(ii)	•	al from Earth to satellite is attenuated greatly must be amplified greatly before transmission		B1	
			downlink w	ould swamp uplink unless frequencies are different		B1	[2]