

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS 9702/23

Paper 2 AS Level Structured Questions

October/November 2016

MARK SCHEME
Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

		Cambridge International AS/A Level – October/November 2016 9	702	23	
1	(a) (d	ensity =) mass/volume		B1	[1]
	(b) (i)	$d = [(6 \times 7.5)/(\pi \times 8100)]^{1/3}$			
		= 0.12(1) m		A1	[1]
	(ii)				
		or fractional uncertainty = $(0.04 + 0.05)/3$ (= 0.03)		C1	
		absolute uncertainty (= 0.03×0.121) = 0.0036		C1	
		$d = 0.121 \pm 0.004 \mathrm{m}$		A1	[3]
2	(a) fo	rce per unit positive charge		B1	[1]
	(b) (i)	time = $5.9 \times 10^{-2} / 3.7 \times 10^{7}$ = 1.6×10^{-9} s $(1.59 \times 10^{-9}$ s)		A1	[1]
	(ii)	E = V/d		C1	
		$= 2500 / 4.0 \times 10^{-2}$			
		= $6.3 \times 10^4 \text{N C}^{-1} (6.25 \times 10^4 \text{or} 62500 \text{N C}^{-1})$		A1	[2]
	(iii)	a = Eq/m or F = ma <u>and</u> F = Eq		C1	
		= $(6.3 \times 10^4 \times 1.60 \times 10^{-19})/9.11 \times 10^{-31} = 1.1 \times 10^{16} \mathrm{ms^{-2}}$		A1	[2]
	(iv	$s = ut + \frac{1}{2}at^2$			
		$= \frac{1}{2} \times 1.1 \times 10^{16} \times (1.6 \times 10^{-9})^{2}$		C1	
		$= 1.4 \times 10^{-2} \text{ (m)}$		C1	
		distance from plate = $2.0 - 1.4$ = 0.6 cm (allow 1 or more s.f.)		A1	[3]
	(v)	, , ,			
		 or acceleration due to electric field » acceleration due to gravitational field 	I	B1	[1]
	(vi)	v_X – t graph: horizontal line at a non-zero value of v_X		B1	
		v_Y — t graph: straight line through the origin with positive gradient		B1	[2]

Mark Scheme

Syllabus

Paper

Page 2

Cambridge International AS/A Level – October/November 2016 9702 23 3 (a) force/load is proportional to extension/compression (provided proportionality limit is not exceeded) B1 [1] (b) (i) $k = F/x$ or $k =$ gradient $k = 600 \text{Nm}^{-1}$ (ii) $(W =) \% kx^2$ or $(W =) \% x^2$ or $(W =) \% x^2$ or $(W =) \% x^2$ or $(W =) 30.5 \times 24 \times 0.040 = 0.48 \text{J}$ A1 [2] C1 (iii) $(M =) \% xx^2$ or $(M =) \% x^2$ or $(W =) 30.5 \times 24 \times 0.040 = 0.48 \text{J}$ A1 [2] A1 [2] (iii) $(M =) \% xx^2$ or $(M =) \% x^2$ or $(M =) 0.5 \times 24 \times 0.040 = 0.48 \text{J}$ A1 [2] A1 [2] 2. (work done against resistive force = $0.48 - 0.45 = 0.03(0) \text{J}$ C1 average resistive force = $0.030/0.040$ C1 C1 = $0.45/0.48 \text{J} \times 1000$ C1 = $0.45/0.4$	P	age 3	Mark Scheme	Syllabus	Раре	
is not exceeded) (b) (i) $k = F/x$ or $k = \text{gradient}$ $k = 600 \text{Nm}^{-1}$ (ii) $(W =) \frac{1}{2} \frac{1}{2} \frac{1}{2} x$ or $(W =) \frac{1}{2} \frac{1}{2} x$ or $(W =) \text{ area under graph}$ (1ii) $(W =) \frac{1}{2} \frac{1}{2} x^2$ or $(W =) \frac{1}{2} \frac{1}{2} x$ or $(W =) 0.5 \times 24 \times 0.040 = 0.48 \text{J}$ A1 [2] (iii) 1. $(E_K =) \frac{1}{2} \frac{1}{2} x$ A1 [2] 2. $(\text{work done against resistive force} =) 0.48 - 0.45 [= 0.03(0) \text{J}]$ C1 $= 0.45 \text{J}$ A1 [3] 2. $(\text{work done against resistive force} =) 0.48 - 0.45 [= 0.03(0) \text{J}]$ C1 $= 0.75 \text{N}$ A1 [3] (iv) efficiency = [useful energy out/total energy in] (×100) C1 $= [0.45/0.48] (\times 100)$ $= 0.94 \text{ or } 94\%$ A1 [2] 4. (a) the number of oscillations per unit time of the source/of a point on the wavel/of a particle (in the medium) A1 [2] or the number of wavelengths/wavefronts per unit time of the source/of a point on the wavel/of a particle (in the medium) A1 [2] or the number of wavelengths/wavefronts per unit time (M1) (A1) (b) T or period = $2.5 \times 250 (\mu \text{s}) (= 625 \mu \text{s})$ M1 frequency = $1/(6.25 \times 10^{-4}) \text{or } 1/(2.5 \times 250 \times 10^{-6}) = 1600 \text{Hz}$ A1 [2] (c) (i) for maximum frequency: $f_0 = f_0 \text{y}/(v - v_0)$ $1640 = (1600 \times 330) / (330 - v_0)$ C1 $v_0 = 8(.0) \text{ms}^{-1} (8.049 \text{ms}^{-1})$ A1 [2] (ii) loudspeaker moving towards observer causes rise in/higher frequency or repeated rise and fall/higher and then lower frequency (M1)			Cambridge International AS/A Level – October/November 2016	9702	23	
$k = 600 \mathrm{Nm}^{-1}$ A1 [2] (ii) $(W =) \frac{1}{2}kx^2$ or $(W =) \frac{1}{2}Fx$ or $(W =)$ area under graph C1 $(W =) 0.5 \times 600 \times (0.040)^2 = 0.48 \mathrm{J}$ or $(W =) 0.5 \times 24 \times 0.040 = 0.48 \mathrm{J}$ A1 [2] (iii) 1. $(E_K =) \frac{1}{2}mv^2$ C1 $= \frac{1}{2} \times 0.025 \times 6.0^2$ $= 0.45 \mathrm{J}$ A1 [2] 2. (work done against resistive force =) 0.48 - 0.45 [= 0.03(0) J] C1 average resistive force = 0.030/0.040 C1 $= 0.75 \mathrm{N}$ A1 [3] (iv) efficiency = [useful energy out/total energy in] (×100) C1 $= [0.45/0.48] (\times 100)$ $= 0.94 \text{ or } 94\%$ A1 [2] 4 (a) the number of oscillations per unit time of the source/of a point on the wave/of a particle (in the medium) A1 [2] or the number of wavelengths/wavefronts per unit time passing a (fixed) point (M1) (A1) (b) T or period = $2.5 \times 250 (\mu \mathrm{s}) (= 625 \mu \mathrm{s})$ M1 frequency = $1/(6.25 \times 10^{-4}) \text{ or } 1/(2.5 \times 250 \times 10^{-6}) = 1600 \mathrm{Hz}$ A1 [2] (c) (i) for maximum frequency: $f_0 = f_8 V / (V - V_8)$ 1640 = $(1600 \times 330) / (330 - V_8)$ C1 $V_8 = 8(.0) \mathrm{ms}^{-1} (8.049 \mathrm{ms}^{-1})$ A1 [2] (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency or repeated rise and fall/higher and then lower frequency (M1)	3			nality limit	B1	[1]
(ii) $(W=) \frac{1}{2}kx^2$ or $(W=) \frac{1}{2}Fx$ or $(W=)$ area under graph $(W=) 0.5 \times 600 \times (0.040)^2 = 0.48 \text{ J}$ or $(W=) 0.5 \times 24 \times 0.040 = 0.48 \text{ J}$ A1 [2] (iii) 1. $(E_K =) \frac{1}{2}mv^2$ $= \frac{1}{2} \times 0.025 \times 6.0^2$ $= 0.45 \text{ J}$ A1 [2] 2. $(\text{work done against resistive force} =) 0.48 - 0.45 [= 0.03(0) \text{ J}]$ $= 0.75 \text{ N}$ A1 [3] (iv) efficiency = [useful energy out/total energy in] (×100) $= [0.45/0.48] (\times 100)$ $= 0.94 \text{ or } 94\%$ A1 [2] 4 (a) the number of oscillations per unit time of the source/of a point on the wave/of a particle (in the medium) of the source/of a point on the wave/of a particle (in the medium) (b) T or period = $2.5 \times 250 \text{ (µs)} (= 625 \text{ µs)}$ frequency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6}) = 1600 \text{ Hz}$ A1 [2] (c) (i) for maximum frequency: $f_0 = f_8 v / (v - v_8)$ $1640 = (1600 \times 330) / (330 - v_8)$ $v_8 = 8(.0) \text{ ms}^{-1} (8.049 \text{ ms}^{-1})$ (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency or respected rise and fall/higher and then lower frequency (M1)		(b) (i)	k = F/x or $k = gradient$		C1	
$(W =) 0.5 \times 600 \times (0.040)^2 = 0.48 \text{ J} \text{or} (W =) 0.5 \times 24 \times 0.040 = 0.48 \text{ J} \text{A1} [2]$ $(iii) 1. (E_K =) \frac{1}{2}mv^2 \qquad \qquad$			$k = 600 \mathrm{N}\mathrm{m}^{-1}$		A1	[2]
(iii) 1. $(E_K =) \frac{1}{2}mv^2$ C1 = $\frac{1}{2} \times 0.025 \times 6.0^2$ = 0.45 J A1 [2] 2. (work done against resistive force =) 0.48 – 0.45 [= 0.03(0) J] C1 average resistive force = 0.030 / 0.040 C1 = 0.75 N A1 [3] (iv) efficiency = [useful energy out/total energy in] (×100) C1 = [0.45 / 0.48] (×100) = 0.94 or 94% A1 [2] 4 (a) the number of oscillations per unit time of the source/of a point on the wave/of a particle (in the medium) A1 [2] or the number of wavelengths/wavefronts per unit time passing a (fixed) point (M1) (b) T or period = $2.5 \times 250 \text{ (µs)}$ (= 625 µs) M1 frequency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600 Hz A1 [2] (c) (i) for maximum frequency: $f_0 = f_5 v/(v - v_6)$ $v_5 = 8(.0) \text{ ms}^{-1}$ (8.049 ms $^{-1}$) A1 [2] (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency or repeated rise and fall/higher and then lower frequency (M1)		(ii)	$(W=) \frac{1}{2}kx^2$ or $(W=) \frac{1}{2}Fx$ or $(W=)$ area under graph		C1	
$= \frac{1}{2} \times 0.025 \times 6.0^2$ $= 0.45 \text{ J} \qquad \text{A1} \qquad [2]$ 2. (work done against resistive force =) $0.48 - 0.45 = 0.03(0) \text{ J}$ C1 $= 0.75 \text{ N} \qquad \text{A1} \qquad [3]$ (iv) efficiency = [useful energy out/total energy in] (×100) C1 $= [0.45/0.48] \text{ (×100)}$ $= 0.94 \text{or} 94\% \qquad \text{A1} [2]$ 4 (a) the number of oscillations per unit time of the source/of a point on the wave/of a particle (in the medium) or the number of wavelengths/wavefronts per unit time passing a (fixed) point (A1) (b) T or period = $2.5 \times 250 \text{ (µs)} = 625 \text{ µs}$ M1 $\text{frequency} = \frac{1}{6.25 \times 10^{-4}} \text{ or } \frac{1}{2.5 \times 250 \times 10^{-6}} = 1600 \text{ Hz} \qquad \text{A1} [2]$ (c) (i) for maximum frequency: $f_0 = f_8 v/(v - v_8)$ $1640 = (1600 \times 330) / (330 - v_8) \qquad \text{C1}$ $v_s = 8.0 \text{ ms}^{-1} (8.049 \text{ ms}^{-1}) \qquad \text{A1} [2]$ (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency or repeated rise and fall/higher and then lower frequency (M1)			$(W =) 0.5 \times 600 \times (0.040)^2 = 0.48 \text{J}$ or $(W =) 0.5 \times 24 \times 0.040 = 0.040$.48 J	A1	[2]
2. (work done against resistive force =) $0.48 - 0.45$ [= $0.03(0)$ J] C1 average resistive force = $0.030/0.040$ C1 = 0.75 N A1 [3] (iv) efficiency = [useful energy out/total energy in] (×100) C1 = $[0.45/0.48]$ (×100) A1 [2] = 0.94 or 0.94 or 0.94 A1 [2] A1 [2] A1 (a) the number of oscillations per unit time of the source/of a point on the wave/of a particle (in the medium) A1 [2] or the number of wavelengths/wavefronts per unit time (M1) passing a (fixed) point (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1)		(iii)	1. $(E_{\rm K} =) \frac{1}{2} m v^2$		C1	
2. (work done against resistive force =) $0.48 - 0.45$ [= $0.03(0)$ J] C1 average resistive force = $0.030/0.040$ C1 = 0.75 N A1 [3] (iv) efficiency = [useful energy out/total energy in] (×100) C1 = $[0.45/0.48]$ (×100) = 0.94 or 94% A1 [2] 4 (a) the number of oscillations per unit time of the source/of a point on the wave/of a particle (in the medium) A1 [2] or the number of wavelengths/wavefronts per unit time passing a (fixed) point (A1) (b) T or period = 2.5×250 (μ s) (= 625 μ s) M1 frequency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600 Hz A1 [2] (c) (i) for maximum frequency: $f_0 = f_s v/(v - v_s)$ $1640 = (1600 \times 330) / (330 - v_s)$ C1 $v_s = 8(.0)$ m s ⁻¹ (8.049 m s ⁻¹) A1 [2] (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency or repeated rise and fall/higher and then lower frequency (M1)			$= \frac{1}{2} \times 0.025 \times 6.0^2$			
average resistive force = $0.030/0.040$ C1 = 0.75N A1 [3] (iv) efficiency = [useful energy out/total energy in] (×100) C1 = $[0.45/0.48]$ (×100) = 0.94 or 94% A1 [2] 4 (a) the number of oscillations per unit time of the source/of a point on the wave/of a particle (in the medium) A1 [2] or the number of wavelengths/wavefronts per unit time passing a (fixed) point (A1) (b) T or period = 2.5×250 (μ s) (= 625 μ s) M1 frequency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600Hz A1 [2] (c) (i) for maximum frequency: $f_0 = f_s v/(v - v_s)$ $1640 = (1600 \times 330) / (330 - v_s)$ C1 $v_s = 8(.0)\text{ms}^{-1}$ (8.049 m s ⁻¹) A1 [2] (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency or repeated rise and fall/higher and then lower frequency (M1)			= 0.45 J		A1	[2]
$= 0.75\text{N} \hspace{1cm} \text{A1} \hspace{1cm} [3]$			2. (work done against resistive force =) $0.48 - 0.45$ [= $0.03(0)$ J]		C1	
(iv) efficiency = [useful energy out/total energy in] (×100) $= [0.45/0.48] (\times100)$ $= 0.94 or 94\%$ A1 [2] 4 (a) the number of oscillations per unit time of the source/of a point on the wave/of a particle (in the medium) A1 [2] or the number of wavelengths/wavefronts per unit time (M1) passing a (fixed) point (A1) (b) T or period = $2.5 \times 250 \text{ (}\mu\text{s}\text{)}$ (= $625 \mu\text{s}\text{)}$ M1 frequency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600Hz A1 [2] (c) (i) for maximum frequency: $f_0 = f_s v/(v - v_s)$ $1640 = (1600 \times 330) / (330 - v_s)$ $v_s = 8(.0) \text{ms}^{-1} (8.049 \text{ms}^{-1})$ C1 (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency repeated rise and fall/higher and then lower frequency (M1)			average resistive force = 0.030/0.040		C1	
$= [0.45/0.48] (\times 100)$ $= 0.94 or 94\% \qquad \qquad A1 [2]$ 4 (a) the number of oscillations per unit time of the source/of a point on the wave/of a particle (in the medium) A1 [2] or the number of wavelengths/wavefronts per unit time passing a (fixed) point (A1) (b) T or period = 2.5×250 (μ s) (= 625μ s) M1 frequency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600Hz A1 [2] (c) (i) for maximum frequency: $f_0 = f_s v/(v - v_s)$ C1 $v_s = 8(.0) \text{m s}^{-1}$ (8.049 m s ⁻¹) A1 [2] (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency $r_0 = r_0 \text{m s}^{-1}$ (M1)			= 0.75 N		A1	[3]
= 0.94 or 94% (a) the number of oscillations per unit time of the source/of a point on the wave/of a particle (in the medium) or the number of wavelengths/wavefronts per unit time (M1) passing a (fixed) point (b) T or period = 2.5×250 (μ s) (= 625μ s) M1 frequency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600Hz A1 [2] (c) (i) for maximum frequency: $f_0 = f_s v/(v - v_s)$ $1640 = (1600 \times 330) / (330 - v_s)$ C1 $v_s = 8(.0) \text{ms}^{-1} (8.049 \text{ms}^{-1})$ A1 [2] (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency $v_s = v_s = $		(iv	efficiency = [useful energy out/total energy in] (×100)		C1	
4 (a) the number of oscillations per unit time of the source/of a point on the wave/of a particle (in the medium) or the number of wavelengths/wavefronts per unit time (M1) passing a (fixed) point (A1) (b) T or period = 2.5×250 (μ s) (= 625μ s) M1 frequency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600Hz A1 [2] (c) (i) for maximum frequency: $f_0 = f_s v / (v - v_s)$ C1 $v_s = 8(.0) \text{m s}^{-1}$ (8.049 m s ⁻¹) A1 [2] (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency or repeated rise and fall/higher and then lower frequency (M1)			= [0.45/0.48] (×100)			
of the source/of a point on the wave/of a particle (in the medium) or the number of wavelengths/wavefronts per unit time the number of wavelengths/wavefronts per unit time passing a (fixed) point (M1) (M1) (b) T or period = 2.5×250 (μ s) (= 625μ s) M1 frequency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600Hz A1 [2] (c) (i) for maximum frequency: $f_0 = f_s v/(v - v_s)$ C1 $v_s = 8(.0) \text{ms}^{-1} (8.049 \text{ms}^{-1})$ A1 [2] (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency or repeated rise and fall/higher and then lower frequency (M1)			= 0.94 <i>or</i> 94%		A1	[2]
the number of wavelengths/wavefronts per unit time passing a (fixed) point (M1) (b) T or period = 2.5×250 (μ s) (= 625μ s) M1 frequency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600Hz A1 [2] (c) (i) for maximum frequency: $f_0 = f_s v/(v - v_s)$ $1640 = (1600 \times 330) / (330 - v_s)$ C1 $v_s = 8(.0) \text{m s}^{-1} (8.049 \text{m s}^{-1})$ A1 [2] (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency or repeated rise and fall/higher and then lower frequency (M1)	4	of	the source/of a point on the wave/of a particle (in the medium)			[2]
frequency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600 Hz A1 [2] (c) (i) for maximum frequency: $f_0 = f_s v/(v - v_s)$ $1640 = (1600 \times 330) / (330 - v_s)$ C1 $v_s = 8(.0) \text{m s}^{-1} (8.049 \text{m s}^{-1})$ A1 [2] (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency or repeated rise and fall/higher and then lower frequency (M1)		th	e number of wavelengths/wavefronts per unit time			
(c) (i) for maximum frequency: $f_0 = f_s v / (v - v_s)$ $1640 = (1600 \times 330) / (330 - v_s)$ $V_s = 8(.0) \text{m s}^{-1} (8.049 \text{m s}^{-1})$ (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency or repeated rise and fall/higher and then lower frequency (M1)		(b) T	or period = $2.5 \times 250 \; (\mu s) \; (= 625 \; \mu s)$		M1	
$1640 = (1600 \times 330) / (330 - v_s)$ $V_s = 8(.0) \text{m s}^{-1} (8.049 \text{m s}^{-1})$ A1 [2] (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency or repeated rise and fall/higher and then lower frequency (M1)		fre	equency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600 Hz		A1	[2]
$v_{\rm s} = 8(.0){\rm ms^{-1}}~(8.049{\rm ms^{-1}})$ A1 [2] (ii) loudspeaker moving towards observer causes rise in/high <u>er</u> frequency loudspeaker moving away from observer causes fall in/low <u>er</u> frequency or repeated rise and fall/higher and then lower frequency (M1)		(c) (i)	for maximum frequency: $f_0 = f_s v / (v - v_s)$			
(ii) loudspeaker moving towards observer causes rise in/high <u>er</u> frequency B1 loudspeaker moving away from observer causes fall in/low <u>er</u> frequency B1 [2] or repeated rise and fall/higher and then lower frequency (M1)			$1640 = (1600 \times 330) / (330 - v_s)$		C1	
loudspeaker moving away from observer causes fall in/lower frequency B1 [2] or repeated rise and fall/higher and then lower frequency (M1)			$v_s = 8(.0) \mathrm{m}\mathrm{s}^{-1} (8.049 \mathrm{m}\mathrm{s}^{-1})$		A1	[2]
repeated rise and fall/higher and then lower frequency (M1)		(ii)	loudspeaker moving away from observer causes fall in/lower freque			[2]
			repeated rise and fall/higher and then lower frequency		` '	

Mark Scheme

Syllabus

Paper

Page 3

		Cambridge international / to// Love. Cotober to tomber 2010		
5	(a)	wave incident on/passes by or through an aperture/edge wave spreads (into geometrical shadow)	B1 B1	[2]
	(b)	$n\lambda = d\sin\theta$	C1	
		substitution of $\theta = 90^{\circ}$ or $\sin \theta = 1$	C1	
		$4 \times 500 \times 10^{-9} = d \times \sin 90^{\circ}$		
		line spacing = 2.0×10^{-6} m	A1	[3]
	(c)	wavelength of red light is longer (than 500 nm)	M1	
		(each order/fourth order is now at a greater angle so) the fifth-order maximum cannot be formed/not formed	A1	[2]
6	(a)	work done or energy (transformed) (from electrical to other forms) charge	B1	[1]
	(b)	(i) 1. $V = IR$ or $E = IR$	C1	
		I = 14/6.0 = 2.3 (2.33) A	A1	[2]
		2. total resistance of parallel resistors = 8.0Ω	C1	
		current = $14/(6.0 + 8.0)$ = $1.0 A$	A1	[2]
		(ii) $P = EI$ (allow $P = VI$) or $P = V^2/R$ or $P = I^2R$	C1	
		change in power = $(14 \times 2.33) - (14 \times 1.0)$ or $(14^2 / 6.0) - (14^2 / 14)$ or $(2.33^2 \times 6.0) - (1.0^2 \times 14)$		
		= 19W (18W if 2.3 A used)	A1	[2]
	(c)	I = Anvq		
		ratio = $(0.50n/n) \times (1.8A/A)$ or ratio = 0.50×1.8	C1	
		= 0.90	A1	[2]

Mark Scheme
Cambridge International AS/A Level – October/November 2016

Page 4

Syllabus 9702 Paper 23

		(Cambridge International AS/A Level – October/November 2016 9702	23	
7	(a)	or had or	nadron made of quarks/lepton not made of quarks		
		stro			[1]
	(b)	(i)	proton: up, up, down/uud neutron: up, down, down/udd	B1 B1	[2]
		(ii)	composition: 2(uud) + 2(udd) = 6 up, 6 down/6u, 6d	B1	[1]
	(c)	(i)	most of the atom is empty space		
	` ,	• • •	or	D4	[4]
			the nucleus (volume) is (very) small <u>compared to the atom</u>	B1	[1]
		(ii)	nucleus is (positively) charged	B1	
			the mass is concentrated in (very small) nucleus/small region/small volume/small core or		
			the majority of mass in (very small) nucleus/small region/small volume/small core	B1	[2]

Mark Scheme

Syllabus

Paper

Page 5