Example Candidate Responses

Cambridge International AS & A Level

Cambridge International AS and A Level Mathematics

9709

Paper 3

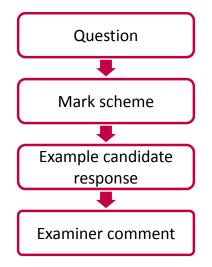
Cambridge Advanced

Cambridge International Examinations retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party even for internal use within a Centre.

 $\ensuremath{\mathbb{C}}$ Cambridge International Examinations 2015 Version 1.0

Contents

Introduction	2
Assessment at a glance	3
Paper 3	5



Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge International AS & A Level Mathematics (9709), and to show how different levels of candidates' performance relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen to exemplify a range of answers. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For ease of reference the following format for each component has been adopted:

Each question is followed by an extract of the mark scheme used by examiners. This, in turn, is followed by examples of marked candidate responses, each with an examiner comment on performance. Comments are given to indicate where and why marks were awarded, and how additional marks could have been obtained. In this way, it is possible to understand what candidates have done to gain their marks and what they still have to do to improve them.

Past papers, Examiner Reports and other teacher support materials are available on Teacher Support at <u>https://teachers.cie.org.uk</u>

Assessment at a glance

The 7 units in the scheme cover the following subject areas:

- Pure Mathematics (units P1, P2 and P3);
- Mechanics (units M1 and M2);
- Probability and Statistics (units S1 and S2).

Centres and candidates may:

- take all four Advanced (A) Level components in the same examination session for the full A Level.
- follow a staged assessment route to the A Level by taking two Advanced Subsidiary (AS) papers (P1 & M1 or P1 & S1) in an earlier examination session;
- take the Advanced Subsidiary (AS) qualification only.

AS Level candidates take:

Paper 1: Pure Mathematics 1 (P1)

1¾ hours

About 10 shorter and longer questions 75 marks weighted at 60% of total

plus one of the following papers:

Paper 2: Pure Mathematics 2 (P2)	Paper 4: Mechanics 1 (M1)	Paper 6: Probability and Statistics (S1)
1¼ hours	1¼ hours	1¼ hours
About 7 shorter and longer	About 7 shorter and longer	About 7 shorter and longer
questions	questions	questions
50 marks weighted at 40%	50 marks weighted at 40%	50 marks weighted at 40%
of total	of total	of total

A Level candidates take:

Paper 1: Pure Mathematics 1 (P1)	Paper 3 Pure Mathematics 3 (P3)
1¾ hours	1¾ hours
About 10 shorter and longer questions	About 10 shorter and longer questions
75 marks weighted at 30% of total	75 marks weighted at 30% of total

plus **one** of the following combinations of two papers:

Paper 4: Mechanics 1 (M1)	Paper 6: Probability and Statistics 1 (S1)
1¼ hours	1¼ hours
About 7 shorter and longer questions	About 7 shorter and longer questions
50 marks weighted at 20% of total	50 marks weighted at 20% of total

or

Paper 4: Mechanics 1 (M1)	Paper 5: Mechanics 2 (M2)
1¼ hours	1¼ hours
About 7 shorter and longer questions	About 7 shorter and longer questions
50 marks weighted at 20% of total	50 marks weighted at 20% of total

or

Paper 6: Probability and Statistics 1 (S1) Paper 7: Probability and Statistics	
1¼ hours	1¼ hours
About 7 shorter and longer questions	About 7 shorter and longer questions
50 marks weighted at 20% of total	50 marks weighted at 20% of total

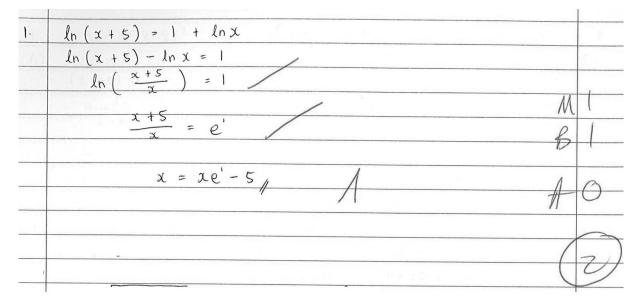
Teachers are reminded that the latest syllabus is available on our public website at **www.cie.org.uk** and Teacher Support at **https://teachers.cie.org.uk**

[3]

Paper 3

Question 1

1 Solve the equation


$$\ln(x+5) = 1 + \ln x,$$

giving your answer in terms of e.

Mark scheme

1	State or imply ln e=1	B1	
	Apply at least one logarithm law for product or quotient correctly	M1	
	(or exponential equivalent)		
	Obtain $x+5=ex$ or equivalent and hence $\frac{5}{e-1}$	A1	[3]

Example candidate response - 1

Total mark awarded = 2 out of 3

Example candidate response – 2

$\ln(n+5) = 1 + \ln x$	
$\ln(n+5) - \ln x = 1$	
$tog \ln (n+5) \times f l$ (n+5) n = e'	101 0
$(n+5)n = e^{-1}$	
n = e' = n = e' - 5	A O
	()

Total mark awarded = 1 out of 3

Examiner comments

This question required knowledge of the rules for logarithms and exponentials. The question also made a specific request for an expression for x in terms of e.

Candidate 2 demonstrated some understanding of the rules of logarithms, but was confused between products and quotients, resulting in (x + 5)x instead of $\frac{x+5}{x}$. Although it was quite common to see errors in changing from logarithms to exponential form, this particular candidate had completed that step correctly, although they then proceeded to reach inappropriate conclusions about the solutions of their equation.

Candidate 1 reached a correct expression in x and e, but did not then rearrange this to find x in terms of e.

Question 2

- 2 (i) Express $24 \sin \theta 7 \cos \theta$ in the form $R \sin(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the value of α correct to 2 decimal places. [3]
 - (ii) Hence find the smallest positive value of θ satisfying the equation

$$24\sin\theta - 7\cos\theta = 17.$$
 [2]

Mark scheme

2	(i)	State or imply $R = 25$	B1	
		Use correct trigonometric formula to find α Obtain 16.26° with no errors seen	M1 A1	[3]
	(ii)	Evaluate of $\sin^{-1} \frac{17}{R}$ (=42.84°)	M1	

Paper 3

Example candidate response - 1

	2) i) 27/sin 0 - 700s	O = Rsin(O-d)
		= RSIN @ COS & - R Sin & COS @
	By companing,	RECTIONS TO CANDIRATES
	p	$R\cos \alpha = 24 - 0$
	DA COST -	Rsmd = -7
		Rsm d = 7 - 0
	A	Audia conclusion of the examination, complete the details of automotic advance. I in the box on the outif
N	$\tan \alpha = \frac{7}{24}$	Assemble an wee booklets and/or lower sheets in correct sequence and
10		$24 \sin \theta - 7 \cos \theta = 25 \sin (\theta - 16.3^{\circ})$
HP -	d= 16.3°	A sector of any commutation brockless of sheets from the examination was set as a
		ntand qualitation is strain when you need including
$\alpha \rightarrow$	R sin 16.3 = 7	
61	R= 25	badantis real- legendata craze to escrete
10		lt application i conservation con applicable

For Examiner's use only
2
0
(4)

Item marks awarded: (i) = 2/3; (ii) = 2/2

Total mark awarded = 4 out of 5

Example candidate response – 2

		XA
2.	(i) R=A	(2)
	24 sino -7 cos 0 = $R sin(0 - \alpha)$	\vee
	· · · · · · · · · · · · · · · · · · ·	
	$x = tan 0 = -\frac{24}{7}$ $tan R = 25$ x = tan = 25	1
	x = tan = 25	,)
	$\tan \alpha = \frac{24}{2}$	
	$\alpha = \tan^{-1}\left(\frac{24}{2}\right) $	D
	X= 73.73	
	= 73.7	
	d Strie Lb	
	= 24 sino-7000 = 25 (sin (0-73.7)	
	(1) $25 gsin(0-73.7) = 17$.	
	sin (0-737) =17 +tc	
	25	
	$0 - 73.7 = \sin(\frac{17}{27}) - 1.82$	
	$\sin \chi = \frac{17}{27}$ $\chi = \sin^{-4}\left(\frac{17}{27}\right)$	
	$x = \sin^{-4}\left(\frac{17}{2r}\right)$	1
	$\alpha = 42.84 W$	
	x = 42.8	
	0-73.7, - 42.8, 137.2	
	0 = 42.8+73.7, 137.2+73.7	
	0 = 42.8 + 73.7, 137.2 + 73.7 $0 = 116.5, 210.9^{\circ}$	-0
	- 4	
		7
		Z

Item marks awarded: (i) = 1/3; (ii) = 1/2

Total mark awarded = 2 out of 5

Examiner comments

- (i) The majority of candidates approached the task of expressing $24 \sin\theta 7 \cos\theta$ in the form $R \sin(\theta \alpha)$ by quoting formulae they had memorised for R and α . This frequently resulted in incorrect statements, as seen here in the work of candidate 2. The confusion between θ and α in the first line of this candidate's response could have been overlooked, but quoting the negative reciprocal of the required value for tan α resulted in not being awarded the method mark. If they had started with a correct expansion of $R \sin(\theta \alpha)$ and had compared coefficients before making their error, the method mark would have been available. The working for R is independent of the work to find α , so this candidate does score the mark for a correct value of R. Candidate 1 has shown the expansion of $R \sin(\theta \alpha)$, together with explanations of their methods for finding R and α , but the question asked for the value of α to two decimal places, and in this response we do not see anything more accurate than 16.3°, so the accuracy mark was not awarded.
- (ii) Candidate 2 has gone on to use their answer from part (i) correctly, but their previous error means that they cannot obtain the correct answer here. Candidate 1 is fortunate that they have sufficient accuracy in their value for α to obtain the correct value for θ .

Question 3

3 The parametric equations of a curve are

$$x = \frac{4t}{2t+3}, \quad y = 2\ln(2t+3).$$

(i) Express $\frac{dy}{dx}$ in terms of t, simplifying your answer.	[4]
(ii) Find the gradient of the curve at the point for which $x = 1$.	[2]

Mark scheme

3 (i) <u>Either</u> Use correct quotient rule or equivalent to obtain

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{4(2t+3)-8t}{(2t+3)^2} \text{ or equivalent}$$
B1

Obtain
$$\frac{dy}{dt} = \frac{4}{2t+3}$$
 or equivalent B1

Use
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
 or equivalent M1

Obtain
$$\frac{1}{3}(2t+3)$$
 or similarly simplified equivalent A1

Or Express t in terms of x or y e.g.
$$t = \frac{3x}{4-2x}$$
 B1

Obtain Cartesian equation e.g.
$$y = 2\ln\left(\frac{6}{2-x}\right)$$
 B1

Differentiate and obtain
$$\frac{dy}{dx} = \frac{2}{2-x}$$
 M1

Obtain
$$\frac{1}{3}(2t+3)$$
 or similarly simplified equivalent A1 [4]

(ii) Obtain
$$2t = 3$$
 or $t = \frac{3}{2}$ B1

Substitute in expression for
$$\frac{dy}{dx}$$
 and obtain 2 B1 [2]

Example candidate response - 1

3.	$y = 2\ln(2t+3)$
	$\frac{2t+3}{dx} = 2 \begin{pmatrix} 2 \\ 2t+3 \end{pmatrix}$
01	U=4t V=2t+3 - 6
171	du = 4 $dv = 2dt = 4$ $dt = 22t+3$
	$d_{x} = \frac{\sqrt{du} - u dv}{dx}$ $d_{y} = \frac{\sqrt{du} - u dv}{dx}$ $\sqrt{2}$
1000 	dt at a
	= (24+3)(4) - (240)(2)
	$(2t+3)^2$
	=(Pt+12)-4t+C
-fo	α (2 t +3) ²
V	= 4t + 18
	$(2t+3)^2$
1997	G
1 :	dy_ 2++3
	duc 4t+18
	$(2t+3)^2$
(A A]	$= \frac{6}{(2++3)^2}$
Ind	24+3 4++18
	= 6(2++3) = 12++18
AO	4 + + 18 /
	(ii) $A+z > c = 1$ $A+t = m = \frac{3}{2}$,
	$\lambda = 4t$
	$2t+3$ $dx = \frac{1}{2}$
01	2+17 = 4t + (==)+18
B	$43 = 4t - 2t = \frac{3}{2}$
	$\pi^{3} = 2^{t}$
00	$t = m_{\tilde{z}}^2$
BC	
R	
13	
5	

Item marks awarded: (i) = 2/4; (ii) = 1/2

Total mark awarded = 3 out of 6

Example candidate response – 2

	Question 3	
	· · · · · · · · · · · · · · · · · · ·	
Û	X = 4t - y - b y' = 4 2t+3 $y - b y' = 2$	y= \$ 2ln (2+3)
	2t+3 V -b V'= 2	$dy = 2\left(\frac{1}{1}\right)$
	dx = uy' + vu'	dt (2++3)
20	dt	dy = 2, dt = 21+3
p	= $4t(2) + (2t+3)4$	dt 22+3
10	= 8t + 8t + 12	
5	= 16t + 12	
-		
	$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$	(26+3)(166+12)
		328+246+48++36
11	= 2 X	32t ² + 72t4 36 4(8t3+1.8t+9)
V	26+3 16t+12	4(8t3+18t+9)
10	$= \frac{2 1}{2 - 4(8t^2 + 18t + 9)}$	- A Market Republic
tu		
	$= \frac{1}{16t^2 + 36t 18} \left(dhg \right)$	
	16t2+ 36+ 18	
(\overline{I})	Grad p & when (x=1)	
	<u> </u>	
	Grad-D	
	167+36-+18	
0.0	-0 1/70.	(hears a cost of the
60	1/25	1912
	= 42-84314204	X
201		
2	170771 121 POLICE MIN	
~	Netter Distance	
1)	No. 2014 Jones 1	12 3
- U A		

Item marks awarded: (i) = 1/4; (ii) = 0/2

Total mark awarded = 1 out of 6

Paper 3

Examiner comments

(i) This part of the question required the candidates to start by differentiating a quotient and a logarithmic function. Candidate 2 started by trying to use the product rule, but did not express the function as a product, causing their method to fail. In differentiating the logarithmic function, they have lost a factor of

2. Despite these two errors, they have used the chain rule correctly to obtain an expression for $\frac{dy}{dx}$ in terms of *t*, and so scored a method mark.

Candidate 1 has quoted the quotient rule correctly, but has made an error in applying it; the numerator of their expression has the term (2t + 3)t where it should have $4t \times 2$. Although they have called it $\frac{dy}{dx}$, they do have a correct unsimplified expression for $\frac{dy}{dt}$. They have scored a mark for the correct

unsimplified form, despite the subsequent error in simplifying their answer. They then go on to use their two derivatives correctly, so they too score the method mark for using the chain rule to obtain an expression for $\frac{dy}{dr}$.

(ii) This part of the question required the candidate to use their answer from part (i) to find the gradient when x = 1, so the first step is to find the value of t when x = 1. In common with many other candidates, candidate 2 has used the value for x as the value for t, so they do not earn any marks here.

Candidate 1 does find the correct value for *t*, and substitutes it in to their expression for the gradient, but their earlier error means that they cannot obtain the correct final answer here.

Question 4

4 The variables *x* and *y* are related by the differential equation

$$(x^2+4)\frac{\mathrm{d}y}{\mathrm{d}x}=6xy.$$

It is given that y = 32 when x = 0. Find an expression for y in terms of x. [6]

Mark scheme

4	Separate variables correctly and integrate one side Obtain $\ln y =$ or equivalent	M1 A1	
	$Obtain = 3\ln(x^2 + 4) \text{ or equivalent}$	A1	
	Evaluate a constant or use $x = 0$, $y = 32$ as limits in a solution	M1	
	containing terms $a \ln y$ and $b \ln (x^2 + 4)$		
	Obtain $\ln y = 3\ln (x^2 + 4) + \ln 32 - 3\ln 4$ or equivalent	A1	
	Obtain $y = \frac{1}{2}(x^2 + 4)$ or equivalent	A1	[6]

Example candidate response - 1

QUESTION Y. (x2+4) 27 6xy z dr. $\frac{\partial y}{\partial y} = \int \frac{\partial x}{(x^2 + 4)} dx$ 1 the KX 49) 6 62 In y 2x (xt 2) (x+2) Critzk Critzy COLIZECTER) (n+4) let n: -1 2x (x2+4) = 3 In AtB 112- - 63 In (22+4) + C A -6-B In let n=0 y= 32 x=0 -6-3) + 28 0 : OF -12 -2B 1-32 = 31-(4) +C 10 32 = 1064 tc N e = 32 62 1032 Ay 64 C= 2008 2 $\frac{1}{2} = \frac{3 \ln (n^2 + 4) + 1}{2}$ $3(x^2+4) + e^{\frac{1}{2}}$ 322 + 12 + e2

Total mark awarded = 4 out of 6

Example candidate response – 2

$(n^2 + 4) dy = 6ny$ dx	
$\int \frac{1}{y} dy = \int \frac{6\pi}{(\pi^2 + 4)} d\pi$	
$\int \frac{6n}{n^2 + y} dx$	
$\frac{U=6n}{dy=6} \frac{dv=(n^2+y)^{-1}}{dx}$	in p
$\frac{d_{x}}{v = (n^{2} + y)} \frac{1}{2x} M$ $v = \ln(n^{2} + y) \cdot 2x$	
$\frac{\ln q + c}{2n} = \frac{6 \ln (n^2 + 4)}{2n} = \frac{6 \ln (n^2 + 4)}{2x}$	
$lnytc = \left(\begin{array}{c} 6n, \ln(n^{2}ty) \right) - \int 6\ln(n^{2}ty) dx \\ 2x \end{array} \right) 2x$	
$\frac{\ln y + c}{2} = \frac{3 \pi \ln (n^2 + y) - \int 6 \ln \frac{2}{n^2 + y} dx}{2x}$	
A	$\overline{\mathcal{O}}$
	2

Total mark awarded = 2 out of 6

Examiner comments

The essential first step in solving this differential equation is to separate the variables and integrate both sides of the resulting equation. In both of these examples the separation of the variables has been completed successfully. Despite an initial (incorrect) thought that they should try to use partial fractions to split up the fraction, candidate 1 does complete both integrals correctly. They then substitute values correctly

to find an expression for the constant of integration, however, their constant becomes $\frac{1}{2}$ when it should be

 $\ln \frac{1}{2}$, so they do not reach a correct expression for $\ln y$ and cannot reach the correct final answer.

Candidate 2's work suggests that they do know that $\frac{d}{dx}(\ln(x^2+4)) = \frac{2x}{x^2+4}$ but they have not realised that

this means that they can simply write down an expression for $\int \frac{6x}{x^2+4} dx$. They have made an incorrect

(and incomplete) attempt to use integration by parts. They have stopped work at this point but, as their expression does not contain terms in x and y of the correct form, no further marks were available to them.

Question 5

- 5 The expression f(x) is defined by $f(x) = 3xe^{-2x}$.
 - (i) Find the exact value of $f'(-\frac{1}{2})$. [3]

(ii) Find the exact value of
$$\int_{-\frac{1}{2}}^{0} f(x) dx$$
. [5]

Mark scheme

5	(i)	Either	Use correct product rule	M1
			Obtain $3e^{-2x} - 6xe^{-2x}$ or equivalent	A1
			Substitute $-\frac{1}{2}$ and obtain 6e	A1
		<u>Or</u>	Take In of both sides and use implicit differentiation correctly	M1

$$\frac{dy}{dx} = y \left(\frac{1}{x} - 2\right) \text{ or equivalent}$$
Substitute $-\frac{1}{2}$ and obtain 6e
A1
[3]

(ii) Use integration by parts to reach
$$kxe^{-2x} \pm \int ke^{-2x} dx$$
 M1
Obtain $-\frac{3}{2}xe^{-2x} \pm \int \frac{3}{2}e^{-2x} dx$ or equivalent A1

Obtain
$$-\frac{3}{2}xe^{-2x} - \frac{3}{4}e^{-2x}$$
 or equivalent A1

Obtain
$$-\frac{3}{4}$$
 with no errors or inexact work seen A1 [5]

Example candidate response - 1

\$.	$f(x) = 3xe^{-2x}$ $u = 3x$ $v = e^{-2x}$	
(i)	$f(x) = 3xe^{-2x}$ $u = 3x$ $v = e^{-2x}$ $u' = 3$ $v' = -2e^{-2x}$	
0.	20	6.5
	$f'(-\frac{1}{2}) = e^{-2(-\frac{1}{2})} \cdot 3 + 3\pi E_{1}^{1} \cdot 3(-\frac{1}{2}) \cdot -2e^{-2(-\frac{1}{2})}$	
1	$f'(-\frac{1}{2}) = e^{-2(-\frac{1}{2})} \cdot 3 + 3i = 3(-\frac{1}{2}) \cdot -2e^{-2(-\frac{1}{2})}$ $= 3e' + 6 \neq \frac{3}{4} \cdot \neq 2e'$	AL
	A	- [-
	$f(-\frac{1}{2}) = 3e' + 3e'$	
	$i \cdot f'(-\frac{1}{2}) = 3e' + 3e' \# A$ $i \cdot f'(-\frac{1}{2}) = 16-3-\# A$	0
	THE	
	×	
(ji)	$\int_{-\frac{1}{2}}^{-\frac{1}{2}} \frac{3\chi e^{-2\chi}}{\chi'} dx \qquad u = 3\chi \qquad V = -\frac{e}{2}$ $u' = 3 \qquad V' = e^{-2\chi}$	
	$u'=3$ $V'=e^{-2x}$	
	$= \begin{bmatrix} 3x \cdot - e^{-2x} \\ 2 \end{bmatrix}_{\frac{1}{2}}^{2} \int_{-\frac{1}{2}}^{-\frac{1}{2}} \frac{e^{-2x}}{2} dx$	
	$L \qquad 2 \qquad J_{-\frac{1}{2}} \qquad J_{-\frac{1}{2}} \qquad 2 \qquad $	
	$= \left[-\frac{3\chi e^{-2\chi}}{2} \right]_{-\frac{1}{2}}^{-\frac{1}{2}} - \left[-\frac{3e^{-2\chi}}{2\chi - 2} \right]_{-\frac{1}{2}}^{-\frac{1}{2}} - \left[-\frac{3e^{-2\chi}}{2\chi - 2} \right]_{-\frac{1}{2}}^{-\frac{1}{2}}$	0
		3
	$= \left[\frac{-3(0)e^{-2(0)}}{2} - \left[\frac{-3(-\frac{1}{2})e^{-2(-\frac{1}{2})}}{2} \right] - \left[\frac{-3e^{-2(0)}}{-3e^{-2(0)}} - \left(\frac{-3e^{-2(-\frac{1}{2})}}{-3e^{-2(-\frac{1}{2})}} \right) \right]$	
	$\begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} -4 \\ -4 \end{bmatrix}$	
	$= 0 - 2a \frac{3e'}{4} - \frac{3}{4} - \frac{3}{4}e'$	
	-	1
	$= \begin{pmatrix} 3e' + 3e' - 3 \\ 4 & 4 \\ 4 & 4 \\ \end{pmatrix}$)
	= 3 = 3	
	$\frac{2}{2} + \frac{3}{4} + \frac{3}{4}$	0
		5
		6/

Item marks awarded: (i) = 2/3; (ii) = 4/5

Total mark awarded = 6 out of 8

Example candidate response – 2

	Quiciton 5
5	1) $f(x) = 3\pi e^{-\lambda}$
	$\frac{dm}{dr} = 3 \qquad \frac{dv}{dr} = -2e^{-2\lambda}$
.(f'us = u dy + v dy
M	$= 3x \times (-2e^{-2x}) \rightarrow e^{-2x} \times 3$
A	$z(-3)_{2}e^{-1x}+3e^{-1x}$
	$\frac{2}{3} \times (-2e^{-2x}) + e^{-2x} \times 3$ $\frac{-3}{2}e^{-2x} + 3e^{-2x} \times 3$ $= 3e^{-2x} (1-2)$
	$f'(-\frac{1}{2}) > 3e^{-2(-\frac{1}{2})}(1-(-\frac{1}{2}))$
AO	$\frac{q}{2}e$
	$ii > \int f(x) dx$
	$\sum \int \lambda e^{-\lambda_{h}} \lambda e^{-\lambda_{h}}$
	5
	$\frac{1}{2} = 3 \qquad \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
	tr=3 to V= −2e
	fus de = un - l not de
M	$= 3x \times -\frac{1}{2}e^{-2x} - \int -\frac{1}{2}e^{-2x} \times 3 - 4x$
A	$\frac{1}{2} \left(\frac{1}{2} \lambda e^{-i\lambda} + \int \frac{1}{2} e^{-i\lambda} d\lambda \right)$
111	
	$\frac{1}{2} \frac{1}{2} \frac{1}$
AU	$\frac{2}{4}e^{(2\lambda-1)}$
	$\int_{-1}^{0} +\omega dx = \left[\frac{2}{4}e^{-2x}(2x-1)\right]_{-1}^{-1}$
M	$ = \left[\frac{1}{4}e^{-\lambda(0)}(\lambda(0)+1)\right] = \left[\frac{1}{4}e^{-\lambda(-\frac{1}{2})}(\lambda(-\frac{1}{2}-1))\right] $
AO	$= -\frac{1}{2} + \frac{1}{2}e$
	$\frac{3e-3}{4}$
-6	

Item marks awarded: (i) = 2/3; (ii) = 3/5

Total mark awarded = 5 out of 8

Paper 3

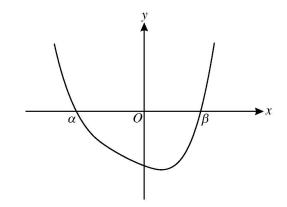
Examiner comments

(i) In both of these examples, the candidates have recognised the notation f'(x) correctly as the derivative of f(x) with respect to x, and they have then gone on to apply the product rule correctly.

Candidate 1 has found a correct answer, but they have not simplified their final answer to the expected final form. They have left their answer as 3e + 3e, not as 6e.

Candidate 2 has made an error before substituting for *x*, by thinking that $3x \times -2 = -3x$, but they have been awarded marks for the correct unsimplified expression for the derivative.

(ii) This part of the question requires the use of integration by parts.


The factors and the signs complicated the task, but candidate 1 reached a correct unsimplified form of the answer. They proceeded to use the correct limits properly, but then made a sign error in simplifying their final answer when $0 - \frac{3e}{4}$ became $\frac{3e}{4}$.

Candidate 2 completed the first stage of the integration correctly, but then made a sign error in the course of simplifying their expression, obtaining $\frac{3}{2}xe^{-2x}$ when they should have had $-\frac{3}{2}xe^{-2x}$, so their answer is not correct at the second stage of integration. Although they earned the method mark for going on to use the correct limits appropriately, they were unable to obtain the correct final answer.

Question 6

6

The diagram shows the curve $y = x^4 + 2x^3 + 2x^2 - 4x - 16$, which crosses the *x*-axis at the points (α , 0) and (β , 0) where $\alpha < \beta$. It is given that α is an integer.

(i) Find the value of α . [2]

- (ii) Show that β satisfies the equation $x = \sqrt[3]{(8-2x)}$. [3]
- (iii) Use an iteration process based on the equation in part (ii) to find the value of β correct to 2 decimal places. Show the result of each iteration to 4 decimal places. [3]

Mark scheme

6	(i)	-	for $x = -2$ and conclude that $\alpha = -2$	M1 A1	[2]
	(ii)	<u>Either</u>	Find cubic factor by division or inspection or equivalent Obtain $x^3 + 2x - 8$	M1 A1	
			Rearrange to confirm given equation $x = \sqrt[3]{8-2x}$	A1	
		<u>Or</u>	Derive cubic factor from given equation and form product with $(x - \alpha)$	M1	
			$(x+2)(x^3+2x-8)$	A1	
			Obtain quartic $x^4 + 2x^3 + 2x^2 - 4x - 16 (= 0)$	A1	
		<u>Or</u>	Derive cubic factor from given equation and divide the quartic by the cubic	M1	
			$(x^4 + 2x^3 + 2x^2 - 4x - 16) \div (x^3 + 2x - 8)$	A1	
			Obtain correct quotient and zero remainder	A1	[3]
	(iii)	Use the	given iterative formula correctly at least once	M1	
			inal answer 1.67	A1	
			fficient iterations to at least 4 d.p. to justify answer 1.67 to 2 d.p. or show	V 20	0.001000000
		there is a	a change of sign in interval (1.665, 1.675)	A1	[3]

Example candidate response - 1

u 3 1		-
6) (11 y=0 0= x + 2x + 2x + 2x - 4x - 16	() d	
$\chi^{4} + \chi \chi + \chi^{2} - 4 \chi = 16$	La" i i	
$x(x^{3}+2x^{2}+2x-4) = 16$	A KH S	
$x^{4} + 2x^{3} + 2x^{2} - 4x - 16 = 0$		
by trial and error, K= b, y= = = 11		
x=-2, y=0	K . N	4
		0
$\therefore \alpha = -2$	-	C
	÷.	
(ii) $x^4 + 2x^3 + 2x^2 - 4x - 16 = 0$		
$\frac{1}{2} + x^{3} + x^{2} - 2x - 8 = 0$	Λ	
-	<u></u>	0

	((ii)	$\chi = \sqrt[3]{8-2\kappa}$	
	Xo	١	
	χ,	1.8171	· K = 1.67
	×2	1.6344	
	x,	1.6788	
	n,	1.66/82	
	n,	1.67/07	
2	X	1.67/01	
1	λ,	1. 67/03	
0	X ₈	1.67/02	
(5)			0 = 21 - × 4 - ¹ × 5
C			

Item marks awarded: (i) = 2/2; (ii) = 0/3; (iii) = 3/3

Total mark awarded = 5 out of 8

Example candidate response – 2

1- 1- 0- 1 - E.		
$6(1) \qquad \chi^4 + 2\chi^3 + 2\chi^2 - 4\chi - 16 = 0 = 1)$	14	
$n^{3}(n+2) = -2n(n+2) = 16.33 = 21$		
0°0 (n3-2n) (n+2) ≥d5 - 16 =0		
R. B	Bar State	
2=10.	. (
i and the second s		
$(\varkappa + 2) - 16 = 0.$		
$\kappa = 14$	// .	
$\sim \approx \times = 14$	M	Q

Example candidate response - 2, continued

$ \frac{1}{2} = 1$		$\binom{00}{(11)}$ $(\chi^3 - 2\chi) - 16 = 0$
$\frac{1}{2} = 3$ $\frac{3 \left(8 - 2\kappa = \pi \right)^{3}}{8 - 2\kappa = \pi^{3}}$ $\frac{8 - 2\kappa = \pi^{3}}{16 + 2\kappa = 2\pi^{3}}$ $\frac{16 + 2\kappa = 2\pi^{3}}{16 + 2\kappa = 2\pi^{3}}$ $\frac{16 + 2\kappa = 2\pi^{3}}{\pi^{3} (\pi^{2} + 2)}$ $\frac{16 + 2\kappa = 2\pi^{3}}{\pi^{3} (\pi^{2} + 2)}$ $\frac{16}{\pi^{3} (\pi^{2$	15	
$\frac{3 \left(8 - 2\kappa = \chi \right)}{8 - 2\kappa = \chi^{3}}$ $\frac{8 - 2\kappa = \chi^{3}}{16 + 2\chi = 2\chi^{3}}$ $\frac{\chi^{4} + 2\chi^{3} + 2\chi^{2} - 2\chi - 16}{\chi^{3} (\chi^{3} + 2\chi^{2})}$ $\frac{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{2} - 2\chi - 16) = 0}{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{2} - 2\chi - 16) = 0}$ $\frac{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{2} - 2\chi - 16) = 0}{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{2} - 2\chi - 16) = 0}$ $\frac{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{2} - 2\chi - 16) = 0}{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{2} - 2\chi - 16) = 0}$ $\frac{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{2} - 2\chi - 16) = 0}{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{2} - 2\chi - 16) = 0}$ $\frac{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{2} - 2\chi - 16) = 0}{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{2} - 2\chi - 16) = 0}$ $\frac{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{3} - 2\chi - 16) = 0}{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{3} - 2\chi - 16) = 0}$ $\frac{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{3} - 2\chi - 16) = 0}{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{3} - 2\chi - 16) = 0}$ $\frac{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{3} - 2\chi - 16) = 0}{\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0}$ $\frac{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{3} + 2\chi) + 2\chi - 16) = 0}{\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0}$ $\frac{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{3} + 2\chi) + 2\chi - 16) = 0}{\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0}$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 2\chi - 16) = 0$ $\chi^{3} (\chi^{3} + 2\chi) + 16 = 0$ χ^{3}		$2 = 2$ de $\alpha u = 5 \alpha c = 6 \alpha c + 1 \alpha - 1$
$\frac{8 - 2\mu = x^{3}}{16 + 2\chi = 2x^{3}}$ $\frac{\chi^{4} + 2\chi^{3} + 2\chi^{2} - \chi - 16 = 0}{\chi^{2} (\chi^{3} + 2\chi^{2})}$ $\frac{\chi^{3} (\chi^{3} + 2\chi) + 2\chi (\chi^{2} - 2\chi - 16) = 0}{\chi^{3} (\chi^{3} + 2) + 2\chi (\chi^{2} - 2\chi - 16) = 0}$ $\frac{\chi^{3} (\chi^{3} + 2) + \chi}{\chi^{3} (\chi^{3} + 2) + \chi}$ $\frac{\chi^{3} (\chi^{3} + 2) + \chi}{\chi^{3} (\chi^{3} + 2\chi) - 16} (\chi^{3} (\chi^{2} + 2)) = 0$ $\chi^{3} (\chi^{3} + 2\chi - 16) = \chi$		$3 8 - 2\chi = \chi$
$\frac{\chi^{4} + 2\chi^{3} + 2\chi^{2}}{\chi^{3} + 2\chi^{2}}$ $\frac{\chi^{2} (\chi^{3} + 2\chi^{2})}{\chi^{3} (\chi^{2} + 2) + 2\chi^{3} (\chi^{2} + 2) = 0$ $\frac{\chi^{2} (\chi^{3} + 2\chi) + 2\chi^{2} (\chi^{2} + 2) = 0}{\chi^{2} (\chi^{2} + 2) - 2\chi^{3} (\chi^{2} + 2) + 2\chi^{3} + 2\chi^{$		
$\frac{\chi^{4} + 2\chi^{3} + 2\chi^{2}}{\chi^{3} + 2\chi^{2}}$ $\frac{\chi^{2} (\chi^{3} + 2\chi^{2})}{\chi^{3} (\chi^{2} + 2) + 2\chi^{3} (\chi^{2} + 2) = 0$ $\frac{\chi^{2} (\chi^{3} + 2\chi) + 2\chi^{2} (\chi^{2} + 2) = 0}{\chi^{2} (\chi^{2} + 2) - 2\chi^{3} (\chi^{2} + 2) + 2\chi^{3} + 2\chi^{$		$(16 + 2) = 2x^3$
$\frac{\chi^{2}(\chi^{3} + 2\chi^{2})}{\chi^{3}(\chi + 2\chi) + 2\chi(\chi^{2} - 2\chi - 16) = 0}$ $\frac{\chi^{3}(\chi^{0} + 2) + \chi^{3}(\chi^{0} + 2) $		$\chi^4 + 2\chi^3 + 2\chi^2 - 4\chi - 16 = 0 = 11 - 2 + 2 + 50$
$\frac{2\ell^{3}(\chi^{2} + 2) +}{(2\chi^{3} - 4\chi^{2} - 16)} (\chi^{3}(\chi^{2} + 2) = 0)$ $\frac{1}{\chi^{2}(\chi^{2} + 2)} = 0$ $\chi(2\chi^{3} + 2\chi - 16) = \chi($		$u^2 \left(u^3 + 2u^2 \right)$
$ \begin{array}{c} 0 & (2\pi^{3} - 4\pi\pi - 16) & (\pi^{3}(\pi^{2} + 2) = 0 \\ & \pi & (\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \chi(\pi^$		$n^{3}(n+2n) + 2n(n^{2}-2n-16) = 0.$
$ \begin{array}{c} 0 & (2\pi^{3} - 4\pi\pi - 16) & (\pi^{3}(\pi^{2} + 2) = 0 \\ & \pi & (\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{2} + 2) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \sigma & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \chi(\pi^{3} + 2\pi - 16) \\ & \chi(\pi^{3} + 2\pi - 16) & \chi(\pi^$	1	· · · · · · · · · · · · · · · · · · ·
$\frac{\chi}{(2\pi^{3}+2\pi-16)} = \chi(1-2\pi^{2})$ $\chi = 3/8-2\pi^{2}$ $\chi_{1} = 0$ $\chi_{2} = 0$ $\chi_{2} = 0$ $\chi_{3} = 1.5874$ $\chi_{4} = 16898$ $\chi_{5} = 1.66557$ $B = 1.67$		$\mathcal{H}^{3}(\mathcal{H}^{\otimes}+2)$ +) = $\mathcal{H}^{2}(\mathcal{H}^{\otimes})$
$\frac{2}{\chi} \left(2\pi^{3} + 2\pi - 16\right) + \pi \left(2\pi^{3} + 2\pi - 16\right) + \pi \left(2\pi^{3} + 2\pi - 16\right) + \pi \left(2\pi^{3} + 2\pi^{3} + 2\pi^{3}$	~~~	
$\frac{\chi (2 \pi^{3} + 2\pi - 16)}{\chi = 3/8 - 2\pi}$ $\frac{\chi}{10} \qquad \chi = 3/8 - 2\pi$ $\chi_{1} = 0$ $\chi_{2} = 2$ $\chi_{3} = 1.5874$ $\chi_{4} = 16899$ $\chi_{5} = 1.66557$ A $B = 1.67$	0	$(2\pi^{3} - u\pi - 16)$ $(\pi^{2}(\pi^{2} + 2)) = 0$
(III) $\chi = 3/8 - 2 \chi$ $\chi_1 = 0$ $\chi_2 = 2 2$ $\chi_3 = 1.5874$ $\chi_4 = 16898$ $\chi_5 = 1.66557$ $\beta = 1.67$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\chi \left(2 \chi^3 + 2 \chi - 16 \right) = \chi \left(1 - 2 + 2 + 2 + 2 \right)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c} \chi_{1} = 0 \\ \chi_{2} = @ 2. \\ \chi_{3} = 1.5874 \\ M \\ \chi_{4} = 16899 \\ \chi_{5} = 1.68557 \\ M \\ B = 1.67 \\ \end{array}$		
$\begin{array}{c} \chi_{2} = @ 2. \\ \chi_{3} = 1.5874 \\ M \\ \chi_{4} = 16898 \\ \chi_{5} = 1.66557 \\ A \\ B = 1.67 \\ \end{array}$		$\chi = 3/8 - 2\chi$
$\begin{array}{c c} & & & & & & \\ \hline M & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline M & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$		$\mathcal{H}_{,} = \mathcal{O}$
$\frac{100}{100} \qquad $		
$\frac{1}{B} = 1.67$	hAL	
$\frac{\pi}{\beta} = 1.67$	109	
$\beta = 1.67$	AL	
	<i>v</i>) '	
AQ = c + x $O = 0 + 2) - 16 = 0$		
(2x + 2) - 16 = 0.	AU	X + 2 = b.
(2(+2))-16=0.	/ 1	
		(2c + 2) - 16 = 0.
Х = 19	~	$n = 1c_1$
(γ)	(7)) $\sim \sim \sim$
	U	

Item marks awarded: (i) = 0/2; (ii) = 0/3; (iii) = 2/3

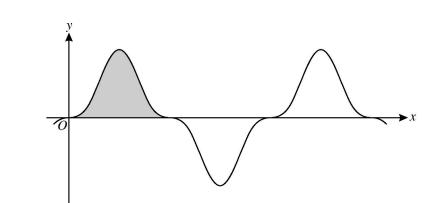
Total mark awarded = 2 out of 8

Examiner comments

(i) Candidate 1 has done what was expected, and used the factor theorem to test possible values for α . They have found that y = 0 when x = -2 and reached the correct conclusion.

Candidate 2 has looked for a factor of *y*, but a sign error in their working where $2x^2 - 4x$ became -2x(x + 2) means that they do not reach their goal, leading them to draw an incorrect conclusion from false working.

(ii) Having found a value for α , the two possible approaches to part (ii) of the question were to divide *y* by $(x - \alpha)$ or to work back from the given answer. Candidate 1 has not recognised the potential to use either of these approaches.


Candidate 2 has crossed through their work, but they have clearly started from the given result, deduced correctly that this is the same as $8 - 2x = x^3$ and tried again to find a factor of *y*, but with no success.

(iii) In both examples the candidates have gone on to use the given iterative formula correctly. Candidate 2 has reached the correct conclusion, but they have not given sufficient evidence to support this; they needed to have at least two consecutive values both supporting the same conclusion. Candidate 1 has made sure of their answer by continuing the process beyond the point (at x_5) where they could have reached the correct conclusion.

Question 7

7

The diagram shows part of the curve $y = \sin^3 2x \cos^3 2x$. The shaded region shown is bounded by the curve and the *x*-axis and its exact area is denoted by *A*.

(i) Use the substitution
$$u = \sin 2x$$
 in a suitable integral to find the value of A. [6]

(ii) Given that
$$\int_{0}^{k\pi} |\sin^3 2x \cos^3 2x| dx = 40A$$
, find the value of the constant k. [2]

Mark scheme

7	(i)	State or imply $du = 2\cos 2x dx$ or equivalent Express integrand in terms of <i>u</i> and <i>du</i>	B1 M1	
		Obtain $\int \frac{1}{2} u^3 (1 - u^2) du$ or equivalent	A1	
		Integration to obtain an integral of the form $k_1 u^4 + k_2 u^6$, k_1 , $k_2 \neq 0$	M1	
		Use limits 0 and 1 or (if reverting to <i>x</i>) 0 and $\frac{1}{4}\pi$ correctly	DM1	
		Obtain $\frac{1}{24}$, or equivalent	A1	[6]
	(ii)	Use 40 and upper limit from part (i) in appropriate calculation Obtain $k = 10$ with no errors seen	M1 A1	[2]

Example candidate response - 1

 $(7)(1) y = 51n^{2} 2x \cos^{3} 2x$ $y = 2 \sin^{3} 4x 4x$ asing = 2 sing cosa V= Sin 24 = 2 (05 25 du di du = d. . de 200525 - 200525 COS45 = Sina $(\sin 2x)^3$ COS325 5 du A HH = C0525 (282 25C dw 1 COST 5 V 3 cos2 2-5 (v^2) $\cos^{2} 2x = C(-\sin^{2} 2x)$ du U3 - U5 du 1 800 \$ 113 25 COS 32 x = 0 when y=0, sin 3 page = 0 4x = sin-1 X= T U=sin Z C畫)· 0= 1 1¹ 03-05 du A= MO 24 --0.05 vnit? 5

Example candidate response - 1, continued

 $\int \frac{t\pi}{1} \int \frac{\sin^3 2x}{\cos^3 2x} dx = 40 \text{ A}$ 7(1) = 40×0.05 = 2. 1 / SIN 3 25 (053 25/ de int. 5 Kat -0- $\left(\frac{1}{2}\sin 4s\right)^3$ 20 5454 A x 20 = 20 40 V ANG AND & CWEEN det 4 Sin 2x=1 when V=1, 2x= 五 71 Y WE = KAR $k = y \sigma \times \frac{\pi}{y}$ = 10 TT Ans: K=10

Item marks awarded: (i) = 2/6; (ii) = 2/2

Total mark awarded = 4 out of 8

Example candidate response – 2

Question Numbers
$7.1y = \sin^3 2x \cos^3 2x$
$U = 5102X$ $U^{2} = 510^{2}2x = (1 - co^{3}22x)$
D, dy 2cos2x
6 dx
$y = \int 4 \sin^3 2x \cos^3 2x dx$
$\int \sin^3 2x \cdot \cos^3 2x du$
2 60 5 2 X
= $\int \sin^3 2x \cdot (2 \cos^4 2x) dy$
$\int_{-1}^{1} u^{3} du^{3} du^{-1} = \int_{-1}^{1} u^{3} du^{-1} d$
$M = \int_{0}^{\frac{1}{2}} 2u^{3} (1-u^{2})(1-u^{2}) du$
$101 = 5^{\frac{15}{12}} 2u^3 - 4u^5 + 2u^7 du$
AC 244 - 446 + 248 1 = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2
4 <u>6</u> P 0 0 A.
$= \frac{1}{2}u^{4} - \frac{2}{3}u^{6} + \frac{1}{4}u^{8}/\frac{4}{2}$
MO = (36.044 - 10.01 + 9.266) - 3.044 - 10.0145 + 9.266)
= 2.3 = 2.2956
M S = C 2 - X S + S X S
ADii SKA ISIN 32x cos 32x dx = 40A
$\int_{0}^{k\pi} \frac{1}{2} \sin^{3} 4 \chi d\chi = 9291.824$
$-\frac{1}{8}\cos^{3}4\chi = -\frac{1}{8}\cos^{3}4\chi = -\frac{1}{8}\cos^$
$-\frac{1}{8}\cos^{3}4k\pi + \frac{1}{4} = 9-2$ 91.824
Cos 34kt = -735 -734.592.
$MO - \frac{1}{6}\cos^{3}4k\pi = 91.699$
$\cos^{3}4k\pi = -733.592$
X < - \ 6611
N. S.
E Padera Stere Martin
(0) porall zak

Item marks awarded: (i) = 2/6; (ii) = 0/2

Total mark awarded = 2 out of 8

Paper 3

Examiner comments

(i) This part of the question gives a clear indication of the method to be used. Candidate 2 has started correctly. They have a correct expression for $\frac{du}{dx}$ and have gone on to attempt to substitute for *x* in the integral. An algebraic slip where $\frac{\cos^3 2x}{2\cos 2x}$ becomes $2\cos^4 2x$ means that their substitution is incorrect and the subsequent method marks are not available because the terms are not of the required form.

Candidate 1 has also made a correct start to the substitution, but they have lost a factor of $\frac{1}{2}$ in the course of making the substitution. They have gone on to attempt the integration, but $\int u^5 du$ became $\frac{u^5}{5}$, so they have not been awarded further marks.

(ii) This part of the question is asking the candidates to consider the symmetry of the function, but candidate 2, in common with many others, has attempted to find *k* by considering what happens when $k\pi$ is substituted as the upper limit of the integral. They have attempted the integral via an alternative route, using the double angle formula, but have made an error in claiming that $\int \frac{1}{2} \sin^3 4x dx = -\frac{1}{8} \cos^4 4x$.

This leads to an impossible equation in k and they stop.

In the first instance, candidate 1 also considers how to obtain 40*A* by changing the upper limit of the integral, but on reflection they then go back to consider the symmetry of the function and proceed to deduce the correct solution.

Question 8

8 Two lines have equations

$$\mathbf{r} = \begin{pmatrix} 5\\1\\-4 \end{pmatrix} + s \begin{pmatrix} 1\\-1\\3 \end{pmatrix}$$
 and $\mathbf{r} = \begin{pmatrix} p\\4\\-2 \end{pmatrix} + t \begin{pmatrix} 2\\5\\-4 \end{pmatrix}$,

where p is a constant. It is given that the lines intersect.

- (i) Find the value of p and determine the coordinates of the point of intersection. [5]
- (ii) Find the equation of the plane containing the two lines, giving your answer in the form ax + by + cz = d, where a, b, c and d are integers. [5]

Mark scheme

(i)			B 1	
			M 1	
	State point of intersection is $(7, -1, 2)$		A1	[5]
ii)	Either	Use scalar product to obtain a relevant equation in a, b, c		
			M 1	
			A1	
			DM1	
			A 1	
			A1	
	<u>Or 1</u>	Calculate vector product of $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 5 \\ -4 \end{bmatrix}$	M1	
			A 1	
			111	
		Obtain correct $\begin{bmatrix} 11\\10\\7 \end{bmatrix}$ or equivalent	A1	
		Substitute coordinates of a relevant point in $\mathbf{r} \cdot \mathbf{n} = d$ to find d	DM1	
		Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients	A1	
	<u>Or 2</u>	Using relevant vectors, form correctly a two-parameter equation for the plane $\begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$	M1	
		Obtain $\mathbf{r} = \begin{bmatrix} 1 \\ -4 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 3 \end{bmatrix} + \mu \begin{bmatrix} 5 \\ -4 \end{bmatrix}$ or equivalent	A1	
		State three equations in x, y, z, λ , μ	A1	
			DM1	
				[5]
		-10y = 72 = 75 of equivalent with integer coefficients	AI	[5]
		(p + 2t, 2 Solve sin Obtain s Substitut State poi i) <u>Either</u> <u>Or 1</u>	(p + 2t, 4 + 5t, -2 - 4t) Solve simultaneous equations and find <i>s</i> and <i>t</i> Obtain <i>s</i> = 2 and <i>t</i> = -1 or equivalent in terms of <i>p</i> Substitute in third equation to find <i>p</i> = 9 State point of intersection is (7, -1, 2) i) <u>Either</u> Use scalar product to obtain a relevant equation in <i>a</i> , <i>b</i> , <i>c</i> e.g. <i>a</i> - <i>b</i> + 3 <i>c</i> = 0 or 2 <i>a</i> + 5 <i>b</i> - 4 <i>c</i> = 0 State two correct equations in <i>a</i> , <i>b</i> , <i>c</i> Solve simultaneous equations to obtain at least one ratio Obtain <i>a</i> : <i>b</i> : <i>c</i> = -11 : 10 : 7 or equivalent Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients Or 1 Calculate vector product of $\begin{pmatrix} 1\\ -1\\ 3 \end{pmatrix}$ and $\begin{pmatrix} 2\\ 5\\ -4 \end{pmatrix}$ Obtain two correct components of the product Obtain correct $\begin{pmatrix} -11\\ 10\\ 7 \end{pmatrix}$ or equivalent Substitute coordinates of a relevant point in r . n = <i>d</i> to find <i>d</i> Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients	$(p + 2t, 4 + 5t, -2 - 4t)$ Solve simultaneous equations and find s and t Obtain $s = 2$ and $t = -1$ or equivalent in terms of p Substitute in third equation to find $p = 9$ State point of intersection is $(7, -1, 2)$ A1 $\frac{\text{Either}}{\text{Either}}$ Use scalar product to obtain a relevant equation in a, b, c e.g. $a - b + 3c = 0$ or $2a + 5b - 4c = 0$ State two correct equations to a, b, c A1 Solve simultaneous equations to obtain at least one ratio DM1 Obtain $a : b : c = -11 : 10 : 7$ or equivalent Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients $A1$ Obtain two correct components of the product Obtain correct $\begin{pmatrix} -11\\ 10\\ 7 \end{pmatrix}$ or equivalent Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients $A1$ Obtain correct $\begin{pmatrix} -11\\ 10\\ 7 \end{pmatrix}$ or equivalent $A1$ Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients $A1$ Obtain correct $\begin{pmatrix} -11\\ 10\\ 7 \end{pmatrix}$ or equivalent $A1$ Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients $A1$ Obtain equation $-11x + 10y + 7z = -73$ or equivalent $A1$ Obtain equation $-11x + 10y + 7z = -73$ or equivalent $A1$ Obtain $Crrect$ $\begin{pmatrix} -11\\ 10\\ 7 \end{pmatrix}$ or equivalent $A1$ Obtain $correct$ $\begin{pmatrix} -11\\ 10\\ 7 \end{pmatrix}$ or equivalent $A1$ Obtain $correct$ $\begin{pmatrix} -11\\ 10\\ 7 \end{pmatrix}$ or equivalent $A1$ Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients $A1$ Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients $A1$ Obtain equation $-11x + 10y + 7z = -73$ or equivalent $A1$ Obtain equation $-11x + 10y + 7z = -73$ or equivalent $A1$ Obtain $A1$ Obtain $r = \begin{pmatrix} 5\\ 1\\ -4\\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ -1\\ 3\\ -4\\ \end{pmatrix} + \mu \begin{pmatrix} 2\\ 5\\ -4\\ \end{pmatrix}$ or equivalent $A1$ Eliminate λ and μ DM1

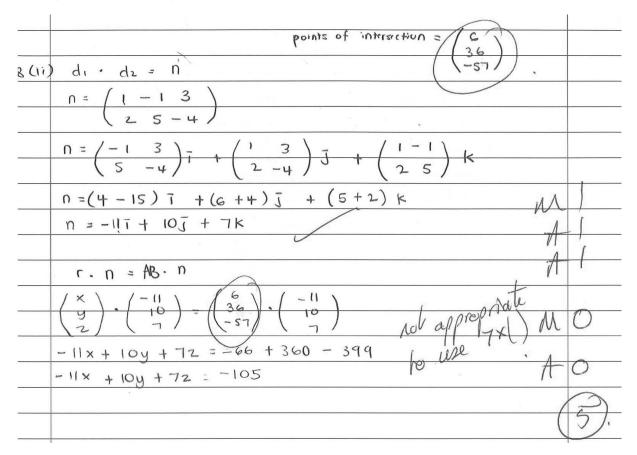
Paper 3

Example candidate response - 1

GUESTION 8 1 2 ς S r2 2 5 P 5 1 0 4 1 -4 - 2 N 5P + 4 + 8 = O -12 = 9 5 -12 +2 + 26 + S 5 2 P, 2 - 5 456 4 ١ ~4+35 -4t -2 -12 + 28 --0 5 + 5 = 1-5 = 4+56 -6) -4+35 = -2-44 W : S= -7 = +2t M 1 (V) 7 3 -7-5 7 26 = 4+56 -3 -5 + 2 5 = 1-75 36 11 10 5 = -14 = 375 += - 143 -93 intersection 5 pt = 2 142 + 15-2 4 + 3 (-14-3) -47 PAST PAPERS

Example candidate response - 1, continued

	$\begin{array}{ccc} C_{ii} \end{array} & \stackrel{2}{\sim} & \stackrel{-1}{\swarrow} & X & \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} & X & \begin{pmatrix} 2 \\ -4 \\ -4 \end{pmatrix} \end{array}$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c} & 2 \\ & & \begin{pmatrix} 4 \\ -15 \\ \\ & & \begin{pmatrix} 6 \\ +4 \\ \\ 5 \\ +2 \end{pmatrix} \end{array}$
3	$\frac{n}{2} = \begin{pmatrix} -41 \\ 10 \\ 2 \end{pmatrix}$
M	2 = - 55 - (50) - 28 2 = - 33
AO	$211 \times + 10 \times + 7z = -33$
6	


Item marks awarded: (i) = 2/5; (ii) = 4/5

Total mark awarded = 6 out of 10

Example candidate response – 2

Question Numbers	
8.	(i) $r = / 5 + 5$ $r = / P + 2t$
6	1-s (4+st)
	(-4+35)/(-2-46)/
1	A THE CARE AND
7	5 + s = p + 2t $1 - s = 4 + 5t$
	s = p + 2t - 5 $1 - (p + 2t - s) = 4 + 5t$
-	$s = p + 2\left(\frac{-p - 2}{4}\right) - 5$ $1 - p - 2t + 5 = 4 + 5t$
	$S = -\frac{29}{7}$ $-P - 2t + 6 = 4 + 5t$
	-p+6-4= 5t +2t
	-4 + 35 = -2 - 4t - 7 = 7t
	$t = -P^{-2}$
	$t = -2 - 2$ $t = -\frac{4}{2}$
A	-4 + 35 = -2 - 4t
	-4+3(p+2(-p-2)) = -2-4(-p-2)
0	
Ð	-4+3(p-2p-4) = -2+4p+8
_	-4 + 3p - 6p - 12 = -2 + 4p + 8
2.1	7 7
	-28 + 21p - 6p + 12 = -2 + 4p + 8
-	21p - 6p - 4p = -2 + 8 - 12 + 28
D	p=22
2	P= 2 /1
	$r_{=}(5+5)$
	(1 - S
	$\left(-4 + 3s\right)$
2	$r = \left(\begin{array}{c} 5 - \frac{L_1}{7} \\ \end{array} \right)$
P	$\left(1 + \frac{29}{7}\right)$
J	<u>-4+3(-27)</u>
	points of = 617
	$\frac{1}{\Gamma} \left(\frac{36/7}{3677} \right)$
	PAST PAP INSIDE Your education hub

Example candidate response – 2, continued

Item marks awarded: (i) = 2/5; (ii) = 3/5

Total mark awarded = 5 out of 10

Examiner comments

(i) Candidate 2 has used a correct method for answering this question, but in the sixth line of their working they have 6 - 4 = -2, and so all of the answers that follow are incorrect.

Candidate 1 has also stated correct equations in s and t, but their response has gone wrong because they have started with a value of p found from an incorrect assumption (that the position vectors of the two given points must be perpendicular).

(ii) The simplest way to find a vector perpendicular to both lines is to use the vector product, as these two candidates have done.

Having completed the vector product correctly, candidate 1 used one of the given points to attempt to find the value of *d*, but their arithmetic error $10 \times 1 = 50$ results in an incorrect final answer.

Candidate 2 has also tried to substitute the position vector of a point on the plane, but instead of using the point found in part (i) they have started by multiplying the coordinates by 7, and consequently their method is incorrect because the point they use does not lie on the plane.

Paper 3

Question 9

9 (i) Express
$$\frac{9-7x+8x^2}{(3-x)(1+x^2)}$$
 in partial fractions. [5]

(ii) Hence obtain the expansion of $\frac{9-7x+8x^2}{(3-x)(1+x^2)}$ in ascending powers of x, up to and including the term in x^3 . [5]

Mark scheme

9 (i) State or imply form
$$\frac{A}{3-x} + \frac{Bx+C}{1+x^2}$$
 B1

Use relevant method to determine a constantM1Obtain
$$A = 6$$
A1Obtain $B = -2$ A1Obtain $C = 1$ A1[5]

(ii) Either Use correct method to obtain first two terms of expansion
$$\sum_{i=1}^{n-1}$$

of
$$(3-x)^{-1}$$
 or $\left(1-\frac{1}{3}x\right)^{-1}$ or $\left(1+x^2\right)^{-1}$ M1

Obtain
$$\frac{A}{3} \left(1 + \frac{1}{3}x + \frac{1}{9}x^2 + \frac{1}{27}x^3 \right)$$
 A1

Obtain $(Bx + C)(1 - x^2)$ A1 Obtain sufficient terms of the product $(Bx + C)(1 - x^2)$, $B, C \neq 0$ and add the two expansions **M**1

Obtain final answer
$$3 - \frac{4}{3}x - \frac{7}{9}x^2 + \frac{56}{27}x^3$$
 A1

<u>Or</u> Use correct method to obtain first two terms of expansion

of
$$(3-x)^{-1}$$
 or $\left(1-\frac{1}{3}x\right)^{-1}$ or $\left(1+x^2\right)^{-1}$ M1

Obtain
$$\frac{1}{3} \left(1 + \frac{1}{3}x + \frac{1}{9}x^2 + \frac{1}{27}x^3 \right)$$
 A1

Obtain
$$(1 - x^2)$$
A1Obtain sufficient terms of the product of the three factorsM1

Obtain final answer
$$3 - \frac{4}{3}x - \frac{7}{9}x^2 + \frac{56}{27}x^3$$
 A1 [5]

Example candidate response - 1

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Question 9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i) 9-72+82 - A BATC	61
$\frac{ \langle c_{1}, z_{2} \rangle}{ \langle c_{2}, z_{2} \rangle} = \frac{ \langle c_{1}, z_{2} \rangle}{ \langle c_{2}, z_{2} \rangle} M $	(3 + 1)(1 + 1) $3 - 1$ $1 + 1$	1
$ \begin{array}{c} (0 = 10 \land \\ A = 6 \\ A $	$9 - 7x + 8x^{2} = A(1+2^{2}) + (8x+4) (3-2)$	
$A = 6 \qquad A = 6 \qquad A = 1$ $(x - y = 0)$ $(y = 0 + 3c)$ $(z = 1)$ $($	164 203	
$\begin{array}{c} 1_{(1+1)} &$	60 = 10 A	1
$\begin{array}{cccc} & (1 + 2 + 1) \\ & (2$	A = 6	+(-
$\frac{1}{44} + \frac{1}{44} $	104 200	
$\frac{1}{4\pi^{3}} \frac{1}{1} \frac{1}{1}$		
$\frac{4}{4} + \frac{1}{10} +$		
$\frac{1}{10} \frac{1-7\lambda + \frac{1}{3}\lambda}{(1-2\lambda)(1+\lambda^{4})} \frac{1}{3-\lambda} \frac{1}{(1+\lambda^{4})} \frac{1}{3-\lambda} \frac{1}{(1+\lambda^{4})} \frac{1}{(1+\lambda^{4})} \frac{1}{3-\lambda} \frac{1}{(1+\lambda^{4})} \frac{1}{(1+\lambda^{4})} \frac{1}{3-\lambda} \frac{1}{(1+\lambda^{4})} \frac{1}{(1+\lambda^{4})} \frac{1}{3-\lambda} \frac{1}{(1+\lambda^{4})} \frac{1}{3-\lambda} \frac{1}{(1+\lambda^{4})} \frac{1}{3-\lambda} \frac{1}{(1+\lambda^{4})} \frac{1}{3-\lambda} \frac{1}{(1+\lambda^{4})} \frac{1}{3-\lambda} \frac{1}{(1+\lambda^{4})} \frac{1}{(1+\lambda^{4})} \frac{1}{3-\lambda} \frac{1}{(1+\lambda^{4})} \frac$		
$(3-4)(1+4^{4}) \qquad 3-4 \qquad 1+4^{4}$ $(3-4)(1+4^{4}) \qquad (1+4^{4}) \qquad 1+4^{4}$ $(1-5)(1+4^{4}) \qquad 3-4 \qquad 1+4^{4}$ $(1-5)(1+4^{4}) \qquad 3-4 \qquad 1+4^{4}$ $(1-5)(1+4^{4}) \qquad 1+4^{4}$ $(1+4^{4}) \qquad 1+4^{4} \qquad 1+4^{4}$ $(1+4^{4}) \qquad 1+4^{4} \qquad 1+4^{$	$B = \begin{pmatrix} -3 \end{pmatrix}$	O
$(3-4)(1+4^{4}) \qquad 3-4 \qquad 1+4^{4}$ $(3-4)(1+4^{4}) \qquad (1+4^{4}) \qquad 1+4^{4}$ $(1-5)(1+4^{4}) \qquad 3-4 \qquad 1+4^{4}$ $(1-5)(1+4^{4}) \qquad 3-4 \qquad 1+4^{4}$ $(1-5)(1+4^{4}) \qquad 1+4^{4}$ $(1+4^{4}) \qquad 1+4^{4} \qquad 1+4^{4}$ $(1+4^{4}) \qquad 1+4^{4} \qquad 1+4^{$	3. 1-7x+4x 6 -3x+1	
$\frac{6}{3^{-k}} = \frac{6}{3(r^{2}k)}$ $= 2(1-\frac{1}{3}k)$ $= 1 + -1(-\frac{1}{3}k) + \frac{-1(-2)}{2}(-\frac{1}{3}k)^{2} + (\frac{-1(-2)(-3)}{3!}(-\frac{1}{3}k)^{3} + \cdots) M (1)$ $= 1 + -1(\frac{1}{3}k) + \frac{1}{2}k^{2} + \frac{1}{3!} + \frac{1}{2!}k^{3} + \frac{1}{2$	$(3-\lambda)(1+\lambda^{2})$ $(1+\lambda^{2})$	
$\frac{6}{3^{-k}} = \frac{6}{3(r^{2}k)}$ $= 2(1-\frac{1}{3}k)$ $= 1 + -1(-\frac{1}{3}k) + \frac{-1(-2)}{2}(-\frac{1}{3}k)^{2} + (\frac{-1(-2)(-3)}{3!}(-\frac{1}{3}k)^{3} + \cdots) M (1)$ $= 1 + -1(\frac{1}{3}k) + \frac{1}{2}k^{2} + \frac{1}{3!} + \frac{1}{2!}k^{3} + \frac{1}{2$	$\frac{1}{1}$ $\frac{1}$	
$= 2 (1 - \frac{1}{3} \wedge) + -1(-\frac{1}{3} \wedge) + -1(-\frac{1}{3} \wedge) + (-1(-\frac{1}{3} \wedge) + (-\frac{1}{3} - \frac{1}{3} \wedge) + (-\frac{1}{3} - \frac{1}{3} \wedge) + \frac{1}{3} \wedge + $	()-2) (1+2) 3-2 1+2°	
$= 2 (1 - \frac{1}{3} \wedge) + -1(-\frac{1}{3} \wedge) + -1(-\frac{1}{3} \wedge) + (-1(-\frac{1}{3} \wedge) + (-\frac{1}{3} - \frac{1}{3} \wedge) + (-\frac{1}{3} - \frac{1}{3} \wedge) + \frac{1}{3} \wedge + $	$\frac{6}{3-k} = \frac{6}{3(t^{3}, t)}$	
$\frac{1}{3} + \frac{1}{4} + \frac{1}{27} + $		
$\frac{1}{3} + \frac{1}{4} + \frac{1}{27} + $	$= 1 + -1(-\frac{1}{3}\lambda) + \frac{-1(-2)}{-\frac{1}{3}\lambda^{2}} + (-\frac{1}{-\frac{1}{3}\lambda^{2}} + (-\frac{1}{-\frac{1}{3}\lambda^{2}})^{2} + \cdots$	1
$\frac{1-x^{2}}{(-3x+1)(1-x^{2}) = -3x + 3x^{3} + 1 - x^{4}} \qquad A \qquad f$ $= 1 - 3x - x^{2} + 3x^{3} \qquad f$ $= 1 - 3x - x^{2} + 3x^{3} \qquad f$ $= 1 - 3x - x^{2} + 3x^{3} \qquad f$	$\frac{1}{3} + \frac{1}{3} + \frac{1}{27} + $	0
$(-3_{n+1})(1-x^{i}) = -3_{n-1} + 3_{n-1}^{i} + 1 - x^{i}$ $= 1 - 3_{n-1} + 3_{n-1}^{i} + 3_{n-1}^{i}$ $(1 - 3_{n-1} + 3_{n-1}^{i}) + ((1 - 3_{n-1} + 3_{n-1}^{i}) + ((1 - 3_{n-1} + 3_{n-1}^{i})) + ((1 - 3_{n-1} + 3_{n-1}^{i}))$ M	$(1+\lambda')^{-1} = 1 + -1(\lambda') +$	
1-2~++x - f((-3~-x'+3x') + ((1)x - 1x'+1x') M	2 1-2°	ſ
1-2~++x - f((-3~-x'+3x') + ((1)x - 1x'+1x') M	$(-3_{x+y})(1-x^{2}) = -3_{x} + 3_{x}^{3} + 1 - x^{4}$	i
	1 1-2 + 12 - g ((- 3 - 2 (+ 3x)) + ((1) + - 2 + + + 2 +) M	-)
$(3-k)(1+k) = 2 - \frac{10}{2} x^2 + \frac{10}{27} x^$	$(3-\lambda)(1+\lambda')$ $(1 - 2 - 8 - 10 x' + 82 x')$ A	0
(7		7)

Item marks awarded: (i) = 4/5; (ii) = 3/5

Total mark awarded = 7 out of 10

Paper 3

Example candidate response – 2

9.0	9-7x+8x ² A B	
	$(3 - \pi)(1 + \pi^2) = (3 - \pi) ((1 + \pi^2))$	
	$9 - 7\mu + 8\pi^2 = A(1 + \pi^2) + B(3 - \pi)$	Cr.
	n=3 $n=0$ B(2
	bb = 10A q = A6+3B	<u></u>
	A=6 3=3B M	
	13=1	
	$9-7x+8x^{2} 6 1$ A(\mathcal{O}
	$(3-\lambda)(1+\lambda^2) = (3-\lambda) + (1+\lambda^2)$	

Example candidate response – 2, continued

Question Numbers	911) 6 ,
	$\overline{(3-n)} + \overline{(1+n^2)}$
	$= 6(3-\lambda)^{-1} + (1+\lambda^{2})^{-1}$
	$(3-n)^{-1}$
	= Kt
	$=\frac{1}{3}(1-\frac{1}{3}x)^{-1}$
	$= \frac{1}{2} \left[\frac{1+\frac{1}{2}}{1+\frac{1}{2}} + \frac{(-1)(-2)}{1+\frac{1}{2}} + \frac{(-1)(-2)(-3)}{1+\frac{1}{2}} - \frac{1}{2} \frac{1}{2} \right]$
	$= \pm (1 + \frac{1}{2}x + \frac{1}{2}x^{2} + \frac{1}{2}x^{3}) \qquad 6 \qquad 27$
	= 3 + 4 x + 1 x 2 + 84 x 3
	# 1 27 Hore
M	$6(3-x)^{-1} = 2 + \frac{2}{3x} + \frac{2}{9}x^2 + \frac{2}{27}x^3$
A	
MI	$(1+\chi^2)^{-1}$
	$= 1 - \chi^{2} \sqrt{4} \left(\frac{(-1)(-2)}{(\chi^{4})} + \frac{(-1)(-2)(-3)}{(\chi^{6})}\right)$
	$= 1 - \chi^{2} + \chi^{4} - \chi^{2} $
A (R. R R. L
m	$6(3-\pi)^{-1} + (1+\pi^2)^{-1}$
	= $(2+\frac{2}{3}\times+\frac{2}{3}\times^{2}+\frac{2}{3}\times^{3})+(1-\times^{2})$
MO	$= 3 + \frac{2}{2} \times - \frac{1}{2} \times 2 + \frac{2}{2} \times 3$
,	A LEXE A DELETER A LEVEL
	3-X)((1)() = (3-30 × (0+x+)) = (2 × 10 × 10 × 10 × 10
0	(x - 2 all
(4)	x = 3
\bigcirc	In A chinate also alle com

Item marks awarded: (i) = 1/5; (ii) = 3/5

Total mark awarded = 4 out of 10

Examiner comments

(i) Candidate 2 has started with an incorrect form for the partial fractions. They have demonstrated a correct method for attempting to find the value of a coefficient, but are unable to score any accuracy marks.

Candidate 1 uses the correct form for the partial fractions and everything goes well until the candidate makes an error in finding the final coefficient. They have found 10 = 12 + 2B + 4 when it should be 10 = 12 + 2B + 2.

(ii) Candidate 2 goes on to use their incorrect coefficients correctly to obtain the expansions of both fractions. Due to the error in the coefficients, the work at the final stage is not equivalent (because there is no need for the multiplication of algebraic expressions), so the final method mark is not available.

Candidate 1 goes on to use their coefficients correctly, but in the course of expanding $6(3 - x)^{-1}$ the factor of 2 is lost and a correct unsimplified expansion is not seen. They have earned the final method mark because they proceeded to complete the work correctly for their expansions.

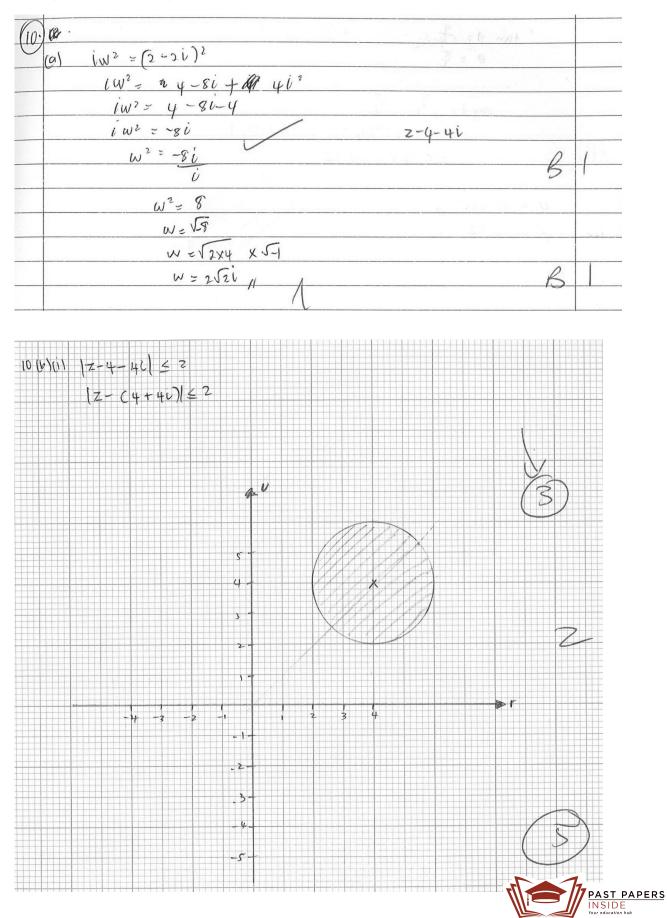
Question 10

- 10 (a) Without using a calculator, solve the equation $iw^2 = (2 2i)^2$. [3]
 - (b) (i) Sketch an Argand diagram showing the region R consisting of points representing the complex numbers z where

$$|z - 4 - 4\mathbf{i}| \le 2. \tag{2}$$

(ii) For the complex numbers represented by points in the region R, it is given that

 $p \leq |z| \leq q$ and $\alpha \leq \arg z \leq \beta$.


Find the values of p, q, α and β , giving your answers correct to 3 significant figures. [6]

Mark scheme

10 (a)) Exp	and and simplify as far as $iw^2 = -8i$ or equivalent	B 1	
	Obt	ain first answer $i\sqrt{8}$, or equivalent	B 1	
	Obt	ain second answer $-i\sqrt{8}$, or equivalent and no others	B1	[3]
(b)) (i)	Draw circle with centre in first quadrant Draw correct circle with interior shaded or indicated	M1 A1	[2]
	(ii)	Identify ends of diameter corresponding to line through origin and centre Obtain $p = 3.66$ and $q = 7.66$ Show tangents from origin to circle Evaluate $\sin^{-1}\left(\frac{1}{4}\sqrt{2}\right)$ Obtain $\alpha = \frac{1}{4}\pi - \sin^{-1}\left(\frac{1}{4}\sqrt{2}\right)$ or equivalent and hence 0.424 Obtain $\beta = \frac{1}{4}\pi + \sin^{-1}\left(\frac{1}{4}\sqrt{2}\right)$ or equivalent and hence 1.15	M1 A1 M1 M1 A1 A1	[6]

Example candidate response - 1

Cambridge International AS and A Level Mathematics 9709

Example candidate response – 1, continued

(IORb) (ii) Zzz Hz 2/	
545-	
4	
$C = \sqrt{4^2 + \psi^2}$	
$p = \sqrt{32 - 2}$	
r = 3.656 854249	1
P = 3.66% //	
*	
6	\bigcirc
$C = \sqrt{6^2 + 6^2} \text{set}$	0
$q_1 = \sqrt{72} - 4$	
9= 4-485281374	
= 4.49 //	
$\tan \theta = \frac{4}{10}$	
0 = E	
Υ.	
T 3万	
$avg t = , \Psi, \Psi.$	
= 0,785398163, 2-35619449	5 No.
MO = 0.785, 2.36	
Q = 0.785 //	1-
$AO \beta = 2.36 \mu$	

Item marks awarded: (a) = 2/3; (b)(i) = 2/2; (b)(ii) = 1/6

Total mark awarded = 5 out of 11

Example candidate response - 2

10.	(a) $iw^2 = (2-2i)^2$		-2+3-7 + 15-7
	$iw^2 = 4 - 8i + 4i^2$		
RI	= 4-81-4	3 (X+1)=	6 (3-16)
171	$iw^2 = -8i$	(×H)] : 1	((+-1))
	$(-10)^2 = -8$	$\left[\left(\frac{1}{2}\right)(x)+1\right] \in =$	(FX2-)H) =) [])
RO	$w = \frac{1}{18}$ $w^2 = 8$ $w = \frac{1}{18}$	= 3(1-X) =	(()))
17	W-18 /	= 2-650	(关于)
_	(b) (i) $ 2-4-4i \leq 2$	9	$2 + \frac{2}{3} \times$
	$ x+yi-4-4i \leq 2$	6	(4,6)
0	$ (x-4)+(y-4)i \leq 2$		
V	$(\chi - 4)^{2} + (\gamma - 4)^{2} \leq 2^{2}$) + (3-6x)	(2,4) (4,4)
	centre = $(4, 4)$	5-670	+ x = + c + (4, 2)
	radhw = 2	0	2 4 6 /2
			(x - x)
	(ii) $\arg 2 = b = + \tan^{-1} \left(\frac{4}{4} \right)$	0.464 ≤ drg Z ≤ 1.11	((- 1) r) à
	= tan ⁻¹ 1 (2)	$\frac{1}{18} \left(\frac{1}{2}\right)^2 + \frac{1}{2} \left(\frac{1}{2}\right)^2 + \frac{1}{16}$	- + (+ (~) + 1) 분]]
•	= 0.785 rad		$\frac{2}{5} + \frac{2}{1} + \frac{2}{5} + \frac{2}{1} + \frac{2}{5}$
	$a = \tan\left(\left(\frac{2}{4}\right)\right)$		18 H FE + FF + E))
	= 0.464 rad		シャーティー キャーティー
	$\beta = \tan^{-1}\left(\frac{1}{2}\right)^{-1}$		
MU	= 1.11 rad	r	3 ((+X)
	p≤121≤9	1	$)^2 \rightarrow (-)(-)(-)(-)$
	$p = \int (2-0)^2 + (4-0)^2$	=]52	3 (1-25+32+42-1)8
-	= 120	= 7.21	3 - 6x + 92 = 1223
MO	= 4,47	5 - + 1 +	-2+ C+
1.	(1x51-38P : 4,47 < 12		+5)+ (
\cap	p=4.47, g=7.21, d	= 0.464, B=1.11	
(3)	·		14-18 + X 31 - 2
C			

Item marks awarded: (a) = 1/3; (b)(i) = 2/2; (b)(ii) = 0/6

Total mark awarded = 3 out of 11

Examiner comments

(a) Candidate 2 has reached $i\omega_2 = -8i$ correctly, but makes an error in dividing through by i. Because of this, their only solution for ω is incorrect.

Candidate 1 has a slip in their working, but there is sufficient working to support their conclusion that $\omega = \sqrt{-8}$. They have then proceeded to state the correct value for one of the two roots.

- (b) (i) Both candidates have drawn correct sketches to illustrate the region *R*. Candidate 2's sketch takes account of the two different scales. Candidate 1 used graph paper, which helps the candidate but was not a requirement.
 - (ii) A correct diagram should have helped candidates to decide where to look to find the values of p, q, α and β .

Candidate 2 has done some work using modulus and argument. Some of the points used are shown on the diagram, but none of them fulfils the requirements of the question.

Candidate 1 has not shown the coordinates of any points on the diagram, but they have drawn the diameter of the circle passing through the origin. They have found the correct value for p, and their diagram confirms that this has been done correctly, but their working for q is not correct. They have found the angle between their diameter and the real axis correctly, but they do not show that they know which two angles they need to find to answer the question.

Cambridge International Examinations 1 Hills Road, Cambridge, CB1 2EU, United Kingdom tel: +44 1223 553554 fax: +44 1223 553558 email: <u>info@cie.org.uk</u> www.cie.org.uk

