GCE O Level

## MARK SCHEME for the November 2005 question paper

## 4024 MATHEMATICS

4024/02 Paper 2 maximum raw mark 100

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



|       |                                                                                                                                                                                                                              | labus             | Pa | aper |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----|------|
|       | GCE O Level – November 2005 4                                                                                                                                                                                                | 024               |    | 2    |
| 1     | Nonsense in one part may be used to carn M marks in any other part of the qu<br>Throughout accept equivalent complete methods and decimal angles without<br>sign, but degree sign essential if answer in degrees and minutes | lestion<br>degree |    |      |
| (a)   | ABO - 90° with reason                                                                                                                                                                                                        | BI                | 1  |      |
| (b) ( | <ol> <li>sin OAB = 6/13 (= 0.4615.) or OAB = 37.48, or seen<br/>(leads to OAB = 27.5.) AG</li> </ol>                                                                                                                         | BI                | 1  |      |
|       | (ii) $\frac{15}{\tan 27.5}$                                                                                                                                                                                                  | M                 |    |      |
|       | 28.8 to 28.9 (cm)                                                                                                                                                                                                            | A                 | 2  |      |
| 1     | iii) 2(their AC)sin27.5 or 2×15cos27.3                                                                                                                                                                                       | MZ                |    |      |
|       | or EPC =2[90 - 27.5] (=125)<br>and $\sqrt{(15^2 - 15^2 - 2x 15x 15 \cos(\text{their } 125))}$ (M2)<br>26.55 to 26.65 (cm)                                                                                                    | At                | 1  |      |
| 2 (a) | (t =) 2 %, 2.33 or better                                                                                                                                                                                                    | B2                | 2  | t    |
|       | After B0, allow B1 for t = 7/3 or 2.3 or 3 or for 3t = 7 seen                                                                                                                                                                |                   |    |      |
| (6)   | x = -2.5 or - 2½ and y = 17<br>After B0, allow B1 for one value found with no errors<br>or allow M1 for correct method to eliminate one variable<br>(reaching such as 4y = k, ky = 68, 8x = k or kx = -20)                   | 82                | 2  |      |
| (c)   | (y+2)(y-2) soi                                                                                                                                                                                                               | B1                |    |      |
|       | (3y + 2)(y + 2) sol                                                                                                                                                                                                          | 81                |    |      |
|       | 3y + 2 obtained with no errors seen<br>y -2.                                                                                                                                                                                 | B)                | Ŧ  |      |
|       | Collect terms e.g. $2x + gx = 2f - 3h$                                                                                                                                                                                       | MI                |    |      |
| (b)   | Factorise e.g. $x(2+g) = 2f - 3h$                                                                                                                                                                                            | 601               |    |      |
| (d)   | a structure to be and                                                                                                                                                                    |                   |    | - 1  |
| (d)   | 2f-3h                                                                                                                                                                                                                        | 41                | 3  |      |

| Page  |                                     | Mark Scheme                                                                                             |     | labus | Pape |
|-------|-------------------------------------|---------------------------------------------------------------------------------------------------------|-----|-------|------|
|       | G                                   | CE O Level – November 2005                                                                              | 4   | 024   | 2    |
| - 10  | Road and the second                 | -1.16                                                                                                   |     |       | 1    |
|       | (i) (DCA =) 90" (angle in se        |                                                                                                         | Br  |       |      |
|       | <li>ii) (DAC =) 34° or 124 - 1</li> |                                                                                                         | B1  |       |      |
|       | iii) (CBA =) 124°                   | (opposite angles of cyclic quad)                                                                        | B)  |       |      |
|       | (iv) (AEB [= ADB ] =) 28*           | (ingles in same segment)                                                                                | BI  | 4     |      |
|       | Lack of reason loses B1 on          | first occasion only                                                                                     |     |       |      |
| (h)   | EBD - 28"                           | (alternate angles) Reason needed                                                                        | Bi  |       | 1    |
|       | Deduces BDX or BDA = I              | EBD                                                                                                     |     |       |      |
|       | And hence triangle BDX is           | assoceles indep                                                                                         | 81  | 2     |      |
| (1)   | (ABE=) 624                          |                                                                                                         | BI  | τ.    |      |
| (d)   | Convincingly shows X is th          | te centre of the circle                                                                                 | 81  | 1     |      |
|       | e.g. Deduces triangle Ai            | BX is isosceles, so AX = BX = DX                                                                        |     |       |      |
| 4 (a) | After B0, allow B1 for dis          | representing 4, 7, 6, 5, 2, 0,, 1<br>agram without labels<br>ed diagram with nt Jenst 4 values correct. | B2  | 2     |      |
| (6) ( | i) (Median =) 2                     |                                                                                                         | BI  |       |      |
|       | i) (Mode =) 1                       |                                                                                                         | BIA |       |      |
|       | ii) (Mean =) 1.92 or 48/2           | 5 oc                                                                                                    | BI  | 3     |      |
| (1)   | k . 0.2 mr 20%                      |                                                                                                         | BIA | 1     |      |
|       | 5k V                                |                                                                                                         | 1   |       |      |
| (d)   | <u>k</u> . 0.04 or 4%               |                                                                                                         | B2  | 2     |      |
|       | 25k                                 |                                                                                                         |     |       |      |
|       | After B0, allow B1 for _k           | , 0.02 or 2% or _24 , 0.038‡ or 3.84% a                                                                 |     |       |      |
|       | 50k                                 | 625                                                                                                     |     |       |      |
| (e)   | Uses 226 cars or total min          | nber of cars (48)                                                                                       | MI  |       |      |
|       | A . 0.25 or 25%                     |                                                                                                         | AL  | 2     | 10   |
|       | 4k.                                 |                                                                                                         |     |       |      |

| Page   |                                                                                               | yllabu  | IS | Paper |
|--------|-----------------------------------------------------------------------------------------------|---------|----|-------|
|        | GCE O Level – November 2005                                                                   | 4024    |    | 2     |
|        | - 1 - 5                                                                                       |         |    | 1     |
|        | Lists 5 different ways                                                                        | BI      |    |       |
| 0.E.   | on 4017 (1, 1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2)                                 |         |    |       |
|        | [, cm 4024, (10, 10, 10, 10), (20, 10, 10), (30, 20, 10), (10, 10, 20), (20, 20)]             |         |    |       |
| (11)   | Lists 8 different ways                                                                        |         |    |       |
| 10.00  | or justifies it is 5 ways with 10 cents first + 3 ways with 20 cents first                    | 1.2.2.1 | 2  |       |
|        | a = 13                                                                                        | BI      | 24 |       |
|        | $b = 21$ or $8 + their (i) \int$                                                              | B2/     | Ξ  |       |
| (ii)   | z = x + y od                                                                                  | BI      | i  | 8     |
| 6 (a). | 24                                                                                            | BI      | 0  |       |
|        | x                                                                                             |         |    |       |
| (b)    | ne                                                                                            | BI      | 1  |       |
|        | x + 0.5                                                                                       |         |    |       |
| (c)    | $24 = 24 = \pm 2\int^{4} \sin \theta$ so i oe, but must contain x in 2 terms                  | MI      |    |       |
|        | x x+0.5                                                                                       |         |    |       |
|        | Correct method to remove fractions,                                                           |         |    |       |
|        | e.g. $24(x+0.5) - 24x = \pm 2x(x+0.5) \int oe^{-1} dx = \pm 2x(x+0.5) \int dx = -10^{-1} dx$  | MI      |    |       |
|        | (but must have contained x in 2 different denominators)                                       |         |    |       |
|        | Obtain $2x^2 + x - 12 = 0$ AG                                                                 | A1      | 1  |       |
| (d)    | Formula For numerical $\underline{p} \pm \sqrt{\underline{q}}$ , (not $\pm p$ ) seen or used, |         |    |       |
|        | χ                                                                                             | 1.1     |    |       |
|        | Allow B1 for $p = -1$ and $\tau = 4$                                                          | BI      |    |       |
|        | and B1 for $q = 97$ or $\sqrt{q} = 9.84$ sot                                                  | 191     |    |       |
|        | Complete square Allow B1 for $(x + V_i)^2$ or $(x + V_i)$ oe soi                              |         |    |       |
|        | and B1 for 97/16 or square roots such as 2.46 or 9.84                                         |         |    |       |
|        | 4                                                                                             |         |    |       |
|        | Final answers Allow B1 for each of 2.212 and -2.712 nww                                       | 192     | 4  |       |
|        | or allow B1 for both 2.21 and - 2.71 seen                                                     |         |    |       |
|        | or allow B1 for both 2.2122. and -2.7122 seen                                                 |         |    |       |
| (e)    | Tane =24 (= 10.8)                                                                             | MI      |    |       |
|        | their 2,212                                                                                   |         |    |       |
|        | 10 minutes 50 to 52 seconds                                                                   | AL      | 2  | - 15  |

| Page 4                            | Mark Scheme                           |          | llabus | Pape |
|-----------------------------------|---------------------------------------|----------|--------|------|
|                                   | GCE O Level – November 2005           |          | 4024   | 2    |
|                                   | (7.8mm) (2.0                          |          |        | 1    |
| 7 (a) (i) 15 x 0.5 <sup>2</sup> ( |                                       | M)       |        |      |
| 1.520 to 1.3                      | 50 (m <sup>2</sup> )                  | AT       | 2      |      |
| (ii) 2 <b>x</b> 2.2(2.5 -         | (=26.84) oc soi                       | M        |        |      |
| Their 26.84                       | - their (i) - 1.9×0.9 (= 23.604)      |          |        |      |
| Leading to                        | 23 fr (m²) AG                         | AL       | 3      |      |
| (b) (i) Increased a               | rea = 23.6 X1.12 or (=26.43 or 26.44) | MI       |        |      |
| Number of                         | tiles - their 26.4                    | indep M1 |        |      |
|                                   | 0.25*                                 |          |        |      |
|                                   | = 422 to 424                          | AL       | 4      |      |
| (ii) Number of                    | boxes = their 423 (lending to 22)     | MI       |        |      |
|                                   | 20                                    |          |        |      |
| Cost= \$3                         | 30 cao                                | A)       | 2      |      |
| (iii) Division by                 | 120 soi                               | MI       |        |      |
| 20 15                             | or <u>100</u> y 15 so)                | MI       |        |      |
| 120                               | 120                                   |          |        |      |
| \$ 25                             |                                       | AL       | 3      | 12   |

| Page    |                                                                            |                                       | llabus | Pape |
|---------|----------------------------------------------------------------------------|---------------------------------------|--------|------|
|         | GCE O Level – November 2005                                                | 4                                     | 024    | 2    |
| 8       | Nonsense in one part muy be used to earn M marks in any other part of the  | auestion                              |        |      |
|         | Throughout accept equivalent complete methods and decimal angles with      | · · · · · · · · · · · · · · · · · · · |        |      |
|         | sign, but degree sign essential if answer is given in degrees and minutes. | 1                                     |        | 1    |
| (a) (i) | 292*                                                                       | BI                                    | 4      | 1    |
| 1.00    |                                                                            |                                       |        | 1    |
| (6)     | 72 <sup>2</sup> + 60 <sup>2</sup> ± 2 × 72 × 60 cos 75 oc soi              | MI                                    |        | 1    |
|         | Correct formula simplification and a square root taken, seen or            |                                       | 11     | 1    |
|         | implied by subsequent values de                                            | p Mi                                  |        |      |
|         | 80.85 to 80.95 (m)                                                         | A2.                                   | 4      | 1    |
|         | After A0, allow A1 for 6547 or 11020 or 104,9 seen, (dep on first M1)      |                                       |        |      |
| (iii)   | sin B — sin 75 soi                                                         | MI                                    |        |      |
|         | 60 their (0)                                                               |                                       |        |      |
|         | sin ABC = 60 sin 75 (= 0.7162.)                                            | MI                                    |        |      |
|         | their (ii)                                                                 |                                       |        |      |
|         | 45.70 to 45.80°                                                            | AI                                    | з      |      |
| (īy)    | 157.76 to 158 or (their (i) + their (iii) - 180) $\checkmark$              | ві                                    | 1      |      |
| (b)     | (Height of kite =) 72 tan 24 (=32,05)                                      | MI                                    |        |      |
|         | $\tan \alpha = \underline{\text{their height}}$ (= 0.534)                  | MI                                    |        |      |
|         | 60                                                                         |                                       |        |      |
|         | 28.05 to 28.15"                                                            | AL                                    | 3      | 12   |
|         | Some possible answers                                                      |                                       |        |      |
|         |                                                                            |                                       |        |      |
|         |                                                                            |                                       |        |      |

| Page 6  |                                                                                                         | S      | /llabus | Pape |
|---------|---------------------------------------------------------------------------------------------------------|--------|---------|------|
|         | GCE O Level – November 2005                                                                             |        | 4024    | 2    |
| 9 (a)   | $\sqrt{(5^{2} + 12^{4})}$ or seen [leading to 13 AG ]                                                   | BI     | 1       |      |
| (b) (i) | # <b>3</b> 5 <b>X</b> 13 soi (=658 = 2042)                                                              | MI     |         |      |
|         | 2 n 5 1 101 (= 50n = 157,1) int                                                                         | iep MI |         |      |
| 1       | Their $65\pi$ + their $50\pi$ + $k\pi$ $5^3$ where $k = integer$ integer (provided all terms are areas) | lep MI |         |      |
|         | 361.0 to 362.0 (cm <sup>2</sup> )                                                                       | AI     | 4       |      |
| (ii)    | 's π 5° x (2. so) (-100π = 314.2)                                                                       | MI     |         |      |
|         | 45n 57 soi (= 250 n /3 - 261.8) int                                                                     | lep M1 |         |      |
|         | 575.5 to 576.5 (cm <sup>2</sup> )                                                                       | AI     | 3       |      |
| (c)     | Figs { $= 1.5^{2}X^{2}$ } (= fig ( $9\pi/2$ ) = fig (4.14)                                              | M      |         |      |
|         | Correct conversion, (using 1 000 000) in                                                                | iep M1 |         |      |
|         | Fig their 14.14 int<br>their 576                                                                        | iep Mi |         |      |
|         | 24 500 to 24 600                                                                                        | AI     |         | 12   |

| Page 7 | Mark Scheme                 | Syllabus | Paper |
|--------|-----------------------------|----------|-------|
|        | GCE O Level – November 2005 | 4024     | 2     |

| 0                                                                                    |     |     |    |
|--------------------------------------------------------------------------------------|-----|-----|----|
| (a) (i) $EF = x - 2$                                                                 |     | 6   |    |
| (ii) $BC = 100/x$                                                                    |     |     |    |
| (iii) $FG = [100/s] - 5$ or their (ii) $- 5 \int$                                    |     |     |    |
| All three correct                                                                    | B2  | 2   |    |
| After B0, allow B1 for any two correct answers                                       |     |     |    |
| (b) $y = (\kappa - 2)(100 - 5)$ convincingly leading to $y = 110 - 5\kappa - 200$ AG | BI  | 1   |    |
| x                                                                                    |     | P 1 |    |
| (e) 40(.0)                                                                           | BI  | 1   |    |
| (d) All 7 points plotted $\int$ (P1 for at least 5 of these $\int$ )                 | P2  |     |    |
| Smooth curve, not grouply thick, through all plotted points, of which at             |     |     |    |
| least 5 are correct                                                                  | CI  | з   |    |
| (c) Drawing tangent at $x = 8$ and estimating change in $y$ , ignoring sign          | ML  |     |    |
| change in x                                                                          |     |     |    |
| - [.60 to - 2.00. [Ignore support from Calculus]                                     | AL  | 2   |    |
| (f).(i) [4.65 an 4.80] to [8.45 to 8.55]                                             | R2  | 2   |    |
| After R0, allow R1 for either value                                                  |     |     |    |
| (ii) 6.20 to 6.40                                                                    | X1: | 1.  | 12 |

| Page 8     | Mark Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Syllabus |    |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----|--|
|            | GCE O Level – November 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40       | 24       | 2  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          | 1  |  |
| 11         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |    |  |
| A          | coept such as b + - a flor b - a throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |          |    |  |
| 0          | nly expressions linear in a and/or b can score.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |    |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81       |          |    |  |
|            | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          |    |  |
| (ii) (A    | -34<br>AB =) b - a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RI       |          |    |  |
|            | ~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |    |  |
| (iii) (I   | )B =) a + b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BI       | 3        |    |  |
| and the    | ~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |    |  |
| (b) Ti     | riangle OAB is equilateral, so length OA = QB = AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BI       | T I      |    |  |
|            | and the second sec |          | 1        |    |  |
| (c) (i) (a | $(\overrightarrow{AX} =) b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BÍ       |          |    |  |
| (b         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BI       | 2        |    |  |
| 10         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |    |  |
| (ii) Pe    | oints lie on a straight line or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BI       |          |    |  |
|            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          |    |  |
| (d) (3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B1       |          |    |  |
|            | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          |    |  |
| (c) Y.     | Z = 3b - 3a or $ZY = 3a - 3b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81       |          |    |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |    |  |
| D          | educes $ XZ  =  YX  =  YZ $ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          |    |  |
| Se         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dep B1   | 2        |    |  |
|            | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |          |    |  |
| A          | Iternative : States XZ parallel OA and YX parallel OB so X 60"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (B1)     |          |    |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dep (81) |          |    |  |
|            | And Land - Dependence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |    |  |
| (0)        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MI       |          |    |  |
|            | $\frac{1}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          |    |  |
|            | $(1)^2$ $(a)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |    |  |
| I          | After 0/2, allow B1 for 1 to 9, 1:9, 9, $\left(\frac{1}{3}\right)^2 \operatorname{or}\left(\frac{a}{3a}\right)^2$ seen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B2       | 2        | 12 |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |    |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |    |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 1 1      |    |  |