MARK SCHEME for the October/November 2006 question paper

4024 MATHEMATICS

4024/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

The grade thresholds for various grades are published in the report on the examination for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2006 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pa	ge 2 Mark Scheme			Syllabus			Paper	
		GCE O LEVEL - OCT/NOV 2006		40	24		02	
(a) (i)	5(x+2)(x-2)) seen		B2	2	2		
1.1.1.	After B0, allo	w B1 for partial factorisation, e.g. $5(x^2 - 4)$ or $(5x + 10)(x - 4)$	-2)					
		or $(x+2)(x-2)$ seen etc						
(ii)	Final answer	$\frac{x-2}{2(x-1)}$ oe including $\frac{x-2}{2x-2}$ asc $\frac{x-2}{2x-2}$		B2	2	2		
	After B0, allo	w B1 for <u>Their (a)(i)</u> soi or $5x - 10$ oe nww 10(x - 1)(x + 2) $10x - 10$						
		or quadratic factors of denominator includin	$\log(x-1)(x)$	(+2)				
(b)	$\frac{4(y+5) - 3(y)}{(y-3)(y+1)}$	<u>(-3)</u> oe soi 5)		M	0			
		or in this form, inner brackets essential form, accept quadratic expression with y^2 and -15						
	Final answer	$\frac{y+29}{(y-3)(y+5)}$ oe		A2	3	2		
		0 10 1						
		, allow A1 for correct simplified numerator and denomina necessarily at the same stage	ator seen,					
(c)	Final answer	$f(g=) \frac{4 \pi^2 L}{T^2} \text{ of } cao$		B3				
	Correct final	answer involving an expression divided by fraction		SCB2				
	or, in either o	order, Square their equation ft		MI				
	and Clears fr	action, $(gT^2 = 4\pi^2 L)$ ft	indep	MI	3	3	10	
2 (a) (i)	Final answer	r(9, 6) or x = 9, y = 6	~~~~	B1	i	1		
(ii)	$\frac{3}{4}$ or $\frac{6}{8}$ or ((0).75		B1	1	1		
(iii)	(±) 10			BI	1	I		
(b) (i)	Final answer	r (-12, 2) or $x = -12, y = 2$ Condone brackets missing	g	B2	2	2		
	After B0, allo	tow B1 for $\begin{pmatrix} -8\\5 \end{pmatrix} + \begin{pmatrix} -4\\-3 \end{pmatrix}$ or or $\begin{pmatrix} -12\\2 \end{pmatrix}$						
(ii)	Trapezium	0-91 B. 21 19-93	indep	B1	4	1	6	

Pa	age 3		Mai	rk Schem	e	Syllab	us		Paper
			GCE O LEVEL - OCT/NOV 2006		NOV 2006	4024	4024		02
3									
(a)	91 ² = 53 ² +	$+64^2 \pm 2 \times 53$	× 64 cos (P)	oe soi		M1			
		53 ² +64 ² - 91 ² 2 × 53 × 64	oe soi	(= <u>- 13</u> 67	8 <u>76</u>) (=-0.2028) 84	MI			
	(P=) 101.0	65° to 101.75	o			Al	3 2	2	
	If only one	e or both of o	ther angles alone	found,					
	allow M1	for $53^2 = 64^2$	$+91^{2} \pm 2 \times 64 \times 91^{2}$	l cos (Q) or	$64^2 = 53^2 + 91^2 \pm 2 \times 53^2$	×91cos (R)			
	and A1 for	(Q=)34.75°	to 34.85° or (R	=) 43.45° to	43.55°				
	Long meth	ods : Allow	M2 A1						
(b)	sin S = <u>53</u>	<u>sin 68</u> (= 74	0.66406)			MI			
	S = 41.55°	' to 41.65°				A1			
	P = 70.35	to 70.45° or	112 - their S	ft	(dep on M1)	A1	3 2	2	
	Long meth	nods : Allow	M2 A1						
(c)	1/2 × 53 × 7	74 sin (their F	")			MI			
	1845 to 18	355 (m²)	cao			AI	2 2	2 8	

4 (a)	(XBY =) 150°				BI	1	i		
(b)	XAD = XBY (= 150)				B1				
	XA = XB and $AD (= BC) = BY$				B 1				
	Conclusion drawn and at least one reason shown SAS need	ed if too m	any f	acts de	p B1	3	÷		
(c)	AXD = BXY soi				B 1				
	Convincingly shows $DXY = 60^{\circ} (= AXB)$ AG			dep	Bl	2	-		
(d)	States DX =XY				B 1				
	Correctly concludes triangle DXY is equilateral			dep	B1	2		8	
	or DY = DX and/or XY with a reason		BI	0.00					
	triangle is equilateral	dep	B1						
(c)(d	i) together $\triangle DCY$ congruent to $\triangle ADX$ and/or $\triangle BXY$		B1						
	DY = DX and/or XY	dep	B1						
	ΔDCY is equilateral	dep	B 1						
	Angle DXY = 60°	dep	B1						
	Numerical values used for other angles cannot gain credit								

1.

Page 4	Mark Scheme	Sylla	bus	<u>;</u>	Pape
	GCE O LEVEL - OCT/NOV 2006	402	24		02
5 (a) (i) (\$) 825		BI	1	1	
(ii) (£) 625		BI	1	1	
(iii) <u>792 × 1.44</u> 1.65		MI			
691.2 (euro	os)	A1	2	2	
(b) (i) (\$) 16 200		B 1	1	1	
(ii) (Their 16 2	00) × 1.08 × 1.08 oe soi	MI			
(\$) 18 895.	68 [Accept 18 896, 18895.7, 18895 or 18900] ft	A1	2	2	
(iii)Figures <u>T</u>	<u>neir (b)(ii) - 15 000</u> (× 100) or <u>Their 1200 + 1296 + 1399.68</u> 15 000 15 000	MI			
25.95 to 26	.05 (%) [Accept 26] ft	AI	2	2	
or 125.95 i	o 126.05 (%)	SC B1			
(c) Use of <u>12</u>	<u>or 100</u> soi 112	MI			
(\$) 41 500		A1	2	2	11

6 (a) Formula For numerical $p \pm \sqrt{q}$, (not $\pm p$), seen or used, r

Allow B1 for $p = -12$ and $r = 14$ and B1 for $q = 452$ or $\sqrt{q} = 21.2$ soi	BI + BI			
Complete square Allow B1 for $(a + 6/7)^2$ or $(a + 6/7)$ oe soi				
and B1 for 113/49 or square roots such as 1.5185or 10.63/7				
Final answers Allow B1 for each of 0.66 and - 2.38 nww	B2	4	2	
or allow B1 for both 0.661. and -2.375 seen or 0.66 and -2.38 seen			(1)	

(b)

0)					
(i) $4x + 6y = 816$ seen (leading to $2x + 3y = 408$)	B1	1	ž		
(ii) $3x + 5y = 654$ oe seen	Bl	i	ı		
(iii) $x = 78$ and $y = 84$	B3	3	3	9	
After B0, allow B2 for one correct answer found with no wrong working					
After B0, allow M1 for correct method to eliminate one variable					
After $5x + 3y = 654$ in (ii), allow SC B2 for both $x = 82$ and $y = 81.3$ or better					

Page 5		Mark Scheme				Syllabus			Paper	
		GCE O LEVEL - (GCE O LEVEL - OCT/NOV 2006			4024	•		02
7 (a)	$2\pi \times 30^2$	(= 1800π)	(=5655)	soi		MI				
	$2\pi \times 30 \times 70$	(=4200π)	(=13194)	soi	indep	MI				
	Their 1800 π +	their 4200π +	$\pi \times 30^2$	(provided all areas)	indep	MI				
	21 650 to 21 75	50 (cm ²)				AI	4	3		
	Note Use of 3	π30 ² may be t	aken as 2π30 ²	$^{2} + \pi 30^{2}$, unless contradicted						
	by the	addition of e	xtra π30², wh	en M0, M1, M1,A0 possible						
(b) (i)	3/3π × 30 ³	(= 18000π) (= 56549)			MI				
	Their 18000n +	$\pi \times 30^2 \times 70^2$	(=81 000π)	(=254469) (both volumes)	indep	M1				
	254 to 255 (litr	res) ca	10			A1	3	2		
(ii)	<u>Their (b)(i)</u> 3	(= 84.8)				М1				
	1 minute 24.5s	econds to 1 m	inute 25.5 sec	conds cao		Al	2	2		
(iii)	(Length =) Figu		<u>r (b)(i)</u> + 0.6) × 0.3]	i		MI				
	Correct convers	sion of units	(using 1000)		indep	M1				
	1.690 to 1.700	m or 169.0 to	170.0 cm [l	Jnit essential in this case]	cao	A1	3	3	12	

Page 6	Mark Scheme	Syllabu	IS		Paper
	GCE O LEVEL - OCT/NOV 2006	4024			02
(a) (i) 21, 28		B1	1	1	
(ii) ½ × 7 × (7	(+1) = 28 (= T ₇) or better seen	B1	1	÷	
(iii) 5050		BI	1	į	
(iv) 25 250 or	r 5 × their (iii) ft	BI	i	1	
	to use T_{500} - their (iv) (provided their (iv) < their T_{500})	MI	ł		
100 000		Al	2	1	
(b) (i) $S_6 = 56$		BI			
S ₇ = 84		B1	2	2	
After B0 +	B0, allow M1 for correct expansion of either or both expressions				
(ii) (7 × (7 + 1	$(7+2)$ $(7+2)$ \div 6 = 84 (= S ₇) or better seen	B1	1	ŝ	
(iii) 1540 s	een	BI	1	i	
(c) (i) $S_4 - S_3 =$	(1 × 4 + 2 × 3 + 3 × 2 + 4 × 1) - (1 × 3 + 2 × 2 + 3 × 1)				
=	$4+3+2+1(=T_4)$ seen	B1	i	5	
20 - 10 =	0 is enough to score				
(ii) $S_{n+1} - S_n$	$= (n + 1) + n + (n - 1) + \dots + 2 + 1 = T_{n+1}$ justified	B1	1	÷.	12
If algebrai	c methods used, mark strictly, expecting at least one step seen				

Page 7		Mark Scher	ne		Syllabu	s	Paper
		GCE O LEVEL - OC1	Γ/NOV 2006		4024		02
) (a) √{104 ²	- 100 ² } or 28	3.56 oe seen []	eading to 28.6 AG	1	BII		
(b) (i) 25°					B1 1	ī	
(ii) (FN =) 1	00 tan (their 25)	(= 46.63)			MI		
(FB =) 7	Their [46.63 - (2	28.56. or 28.6)]		dep	MI		
18.00 to	18.10 (m)	[Expect at least 3 sig fi	igs here]		A1 3	3	
Alternat	ive methods : M	2 A1					
(c) (i) $CN = x$	$(100^2 + 60^2)$	or BC = $\sqrt{\{104^2\}}$	+ 60 ² }		MI		
=	116.6 soi	or = 120.06	soi		A1		
tan BCN	$a = \frac{\text{Their } 28.6}{\text{Their CN}}$		<u>r 28.6</u> r BC		MI		
13.70° t	o 13.80°	cao			AI 4	3	
Alternat	ive methods : sti	II M1 A1 M1 A1					
(ii) BD – <u>(1</u>	<u>heir 28.6)</u> sin 10	(= 164 to 165)			МІ		
cos DB/	$A = \frac{104}{\text{Their BD}}$	(= 0.63)		dep	MI		
50.75° t	o 50.85°	cao			A1 3	2	12
or	DN = <u>(Their 28.</u> tan 10	<u>6)</u> (= 162.198)					
and	$DA = \sqrt{\text{their 1}}$	62.198 ² - 100 ² } (=127.7)	MI			
	$\tan DBA = \frac{the}{1}$	<u>ir 127.7</u> 04	dep	M1			
	50.75° to 50.85	D		Al			
Alternative meth	ods : M2 A1						

Pa	ge 8	Mark Scheme	Syllabu	s	Paper
		GCE O LEVEL - OCT/NOV 2006	4024		02
10	Condone inacc	uracies of up to 1 mm in plotting and drawing.			
		visible, allow P marks if curve passes within 1 mm of	correct plot.		
		C marks can be recovered following a grossly wrong			
		and the curve passes within 1 mm of the correct point.	Charles and the second s		
	Const. (19) Constraints	paper used : no penalty, but extend tolerances to 2 mm			
		to be applied to any P or C marks earned :			
	100 million (100 m	g scale(s) : - 1 once			
		hanged axes : no penalty if labelled, - 1 otherwise			
	Non-u	iniform scale(s) : - 2 after marking as generously as po	ossible		
(a)	8(.03)		B1	1 1	
	Ignore graph for	for $x < 1$ and for $x > 6$ throughout rest of question			
(b)	All 7 points pl	otted ft (P1 for at least 5 of these ft)	P2		
	Smooth curve,	not grossly thick, through all plotted points, of which			
		at least 5 are correct	CI	3 -	
(c)					
	1.35 to 1.45		B1		
	3.55 to 3.70		B1	2 2	
(d)	Drawing tange	ent at $x = 4$ and estimating <u>change in y</u>	M1		
		change in x			
	1.20 to 1.40		Al	2 -	
	Acce	pt integer if in range for A1 integer			
(e) (i)	Ruled straight	line within 1 mm of both (1, 3.5) and (5, 5.5)	L2	2 -	
		w L1 for a good freehand line through these points,			
		that would pass within 1 mm of the points if longer,			
		e that is long enough and passes within 2 mm of the po	ints		
(ii)					
	1.45 to 1.55	and 4.55 to 4.65	XI	1 1	9
(iii)	$2x^3 - 5x^2 - 3$	0x + 50 (= 0) or any equivalent equation	El	1 1	12
		pt $a = -5$, $b = -30$ and $c = 50$			