UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2007 question paper

4024 MATHEMATICS

4024/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Abbreviations

cao correct answer only

oe or equivalent

soi seen or implied

www without wrong working

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Question Number		Sub (part) mark	Comments
1	(a) $\tan C\widehat{A}B = \frac{200}{65}$ oe $C\widehat{A}B = 72.(0)^{\circ}$ accept 71.95 to 72.05	M1 A1 (2)	
	(b) (i) Figs $\frac{750}{5}$ soi 0.15 h oe 23 05 or 22 56 + their 00 09 \checkmark	M1 A1 B1 (3)	Their 00 09 is whatever they think the time is, written in 24 hr. clock style.
	(ii) $\cos P\widehat{R}S = \frac{300}{750}$ or $\sin P\widehat{S}R = \frac{300}{750}$ $P\widehat{R}S = 66.4^{\circ}$ or $P\widehat{S}R = 23.6^{\circ}$ (Bearing of S from R =) 113.6, accept 114, or 180 – their $P\widehat{R}S$ or 90 + their $P\widehat{S}R$	M1 A1 B1 (3)	Expect these angles to be identified, possibly by the final answer. (Degree signs optional)
		(8)	
2	(a) (i) 2.71	B2	
	After B0, 2.709, or their 2.709 correctly rounded, or 2.7(0) www B	(2)	
	(ii) Final ans (b=) $(\pm)\sqrt{x^2 - 2ax}$ oe After B0, $x - a = \sqrt{a^2 + b^2}$ soi	В3	e.g. $(\pm)\sqrt{(x-a)^2-a^2}$
	and $(x-a)^2 = a^2 + b^2$ further M1	(3)	
	(b) (i) $8x - 27$ oe After B0, $5x$ or $8x + k$ seen B1	B2 (2)	
	(ii) Their $8x - 27 < 300$ (provided it is an expression in x) x < 40.875 (accept 40.9 or 41) After M0, Final ans. 40.875 (accept 40.9 or 41)	M1	
	(iii) 40 or their (b)(ii) rounded down to the next whole number.	B1 \(\frac{\(\)}{\(\) \(\) \(\) \(\)	

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Question Number		Sub (part)	Comments
		mark	
3	(a) (i) 56	B1	
	(ii) 68 or 180 - 2×their(i) ✓	BI	
	(b) (i) $\widehat{WXV} = \widehat{YXZ}$ (vertically opposite) or $\widehat{VWX} = \widehat{XZY}$ ($\widehat{WV} / / YZ$) stated	(2)	Reason not required for 1st B1
	of $VWX = XZI (WV // IZ)$ stated	B1	For the 2 nd B1 accept (i) 3 pairs of equal angles stated, with one of the above
	convincingly deduces triangles (VWX and YZX) are equiangular	B1 (2)	reasons given as appropriate. (ii) 2 pairs of equal angles, with reason and conclusion (iii) A solution using the ratios of corresponding sides, provided that the equal angle used is justified, and that similarity has not been
	(ii) $\frac{YZ}{25} = \frac{160}{40}$ oe soi	M1	assumed.
	(YZ=) 100 cao	A1 (2)	
4	(a) Final ans. \$ 13.44 or 1344 c	(6) B1	
	(b) $\frac{35-28}{28}$ × (100) oe	(1) M1	
	25(%)	Al	
	After M0, use of figs $\frac{35}{28}$ soi SC1		
		(2)	
	(c) 5(%)	B2	
	After B0 figs $\frac{35 \times 1200 - 399}{35 \times 1200}$ oe M1	(2)	
	(d) (\$) 4	В3	
	After B0 ÷ by 115 M1 × by 100 indep. M1		
	After B0, M0 115 seen SC1	(3)	
		(8)	

Page 5	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Question Number		Sub (part) mark	
5	Nonsense in one part may be used to earn M marks in any other part of the question. Throughout, accept equivalent complete methods and decimal angles without degree sign, but degree sign essential if answer in degrees and minutes.		
	(a) (i) $(AD^2 =)24^2 + 16^2 \pm 2 \times 24 \times 16 \cos 112$ soi $(AD =)\sqrt{24^2 + 16^2 - 2 \times 24 \times 16 \cos 112}$ (= $\sqrt{1119.697}$)	M1 M1	
	(AD =) 33.5 (from 33.46, accept 33.45 to 33.55)	A2	
	After A0 and at least M1, 1119.697 seen or $(AD =)23.3$ (from $\sqrt{544.30}$) A1 (anw 2)	(4)	
	(ii) $\frac{\sin(B\widehat{C}D)}{16} = \frac{\sin(180 - 112)}{20}$ oe	M1	
	$\sin B\widehat{C}D = \frac{16\sin(180 - 112)}{20} \ (=0.7417)$	M1	
	$B\widehat{C}D = 47.9$ (from 47.88), accept 47.85 to 47.95 (anw 2)	A1 (3)	
	(iii) $\frac{1}{2} \times 24 \times 16 \sin 112$ oe	M1	
	$= 178 \text{ (cm}^2)$	A1 (2)	
	(b) 60 (k) cao	B1 (1)	
		(10)	

Page 6	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Question Number		Sub (part) mark	Comments
6	(a)(i) 6	B1 (1)	For diameter 5, only method marks are available throughout
	(ii) (a) π (their 15) ² 707 (cm ²) accept 706.5 to 707.5	MI Al	
	(b) $\frac{1}{6}(\pi 15^2 - 7\pi 5^2)$ oe or $\frac{1}{6}(their(a) - their 7\pi 5^2)$	(2)	
	or $\frac{theirA\overline{O}B}{360}$ their $\pi 15^2 - \frac{theirA\overline{O}B}{360}$ their $\pi 5^2 - their\pi 5^2$	M1	
	= 26.2 (cm ²) accept 26.15 to 26.25	Al	
		(2)	
	(b) (i) 60(°)	B1 (1)	Accept radian form
	(ii) $\frac{their(i)}{360} \times 2\pi 5$	M1	Expressions may be constructe using radians.
	$\frac{their(i)}{360} \times 2\pi (their 15)$	M1	
	$\frac{their(i)}{360} \times 2\pi 5 + \frac{their(i)}{360} \times 2\pi (their 15) + 2\pi 5 \text{ oe indep}$	М1	
	= 52.4 (cm) (accept 52.35 to 52.45)	Al	
	After MO, 2π5 seen SC1	<i>(6</i>)	i.e. if no other marks are scored, a correct circumference of a small circle cate 1 marks
	(anw 2)	(4)	of a small circle gets 1 mark.
		(10)	
			i

Page 7	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Question Number		Sub (part) mark	Comments
7	(a)(i) $\frac{k}{3+2+1} \times 75 \ k = 1, 2 \ or \ 3.$	MI	
	= 25 (litres)	A1	
	23 (nics)	(2)	
		(2)	
	(ii) e.g. 40, 35, 36 (cents/litre) seen	100	
	Final ans. 25 (litre bag)	MI	
	(anw 0)	Al	
	1997-3	(2)	
	0.00 1 100 24		
	(b)(i) $\frac{1}{3}\pi 10^2 \times 24$ soi	MI	
	7.1		
	$-\frac{1}{3}\pi 5^2 \times 12$ oe e.g. $\frac{7}{8}(\frac{1}{3}\pi 10^2 \times 24)$ a further	M1	
	2199.1or their volume in cm ³ \div 10 ³ indep	USCIII	
	2177.1of their volume in em 4.10 indep	M1	
	2.20 (litres) (accept 2.195 to 2.205) cao	A1	
	(anw 3)	(4)	
	(min sy	2.2	
	75	1 1	
	(ii) $\frac{75}{theirb(i)}$ soi	MI	
		1 1	
	34 or their (ii) rounded down ✓		
	5 to men (ii) rounded down y	A1	
		(2)	
		(-)	
	(iii) Use of (ratio of vols. =) $10^3 : 5^3$ seen		
	or use of $\frac{1}{3}\pi 5^2 \times 12 - \frac{1}{3}\pi 2.5^2 \times 6 \ (= 274.89)$	1	
	of use of $\frac{-\pi}{3}$ ×12- $\frac{-\pi}{3}$ 2.3 ×0 (-2.14.89)	MI	
	272 or their (h)(ii) v. 8 for 75 v. 8 Arounded down		
	272 or their (b)(ii) \times 8\sqrt{or \frac{75}{their 2.199}} \times 8\sqrt{rounded down}	A1	
	2 2 2 2 2 2	-20	
		(2)	
		(12)	
		1	
		1	
		1	
		1 1	
	U		

Page 8	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

	Sub (part) mark	Comments
Condone inaccuracies of up to 1 mm in plotting and drawing. If plots are not visible, allow P marks if curve passes within 1 mm of correct plot. Both P and dep C marks can be recovered following a grossly wrong plot if the plot is ignored and the curve passes within 1 mm of the correct point. Lined or plain paper used: no penalty, extend tolerances to 2 mm. Penalties deducted from P and C marks only: Wrong scale(s) -1 once. Interchanged axes: no penalty if labelled, -1 otherwise. Non-uniform scale: -2 after marking as generously as possible. (a) (x =) 12 or -2	BI BI	
After B0, correct factors of their quadratic or their $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ M1	(2)	
(b)(i) All 6 given points plotted. 4 correct points P1	P2	
Smooth curve, not grossly thick, through all plotted points, dep on PI	C1 (3)	
(ii) Curve drawn to (12,0) or from (a)	DI (1)	Ignore drawn to negative x Follow through only if the shape remains reasonably
(iii) 45 (m) or 45 \pm 0.5 if read from the graph.	H1 (1)	parabolic.
(iv) Using $y = 30$ (e.g. 0.6 to 0.8 and/or 9.3 to 9.5 seen) (distance travelled =) 8.5 to 8.9 (m)	M1 A1	ļ.
(c)(i) (p =) 49	(2) B1	N
(ii)(a) 49 (m) cao	BI	
(b) 5 (m) cao	B1 (3)	
	(12)	
	If plots are not visible, allow P marks if curve passes within 1 mm of correct plot. Both P and dep C marks can be recovered following a grossly wrong plot if the plot is ignored and the curve passes within 1 mm of the correct point. Lined or plain paper used: no penalty, extend tolerances to 2 mm. Penalties deducted from P and C marks only: Wrong scale(s) -1 once. Interchanged axes: no penalty if labelled, -1 otherwise. Non-uniform scale: -2 after marking as generously as possible. (a) $(x =) 12$ or -2 After B0, correct factors of their quadratic or their $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ M1 (b)(i) All 6 given points plotted. 4 correct points P1 Smooth curve, not grossly thick, through all plotted points, dep on P1 (ii) Curve drawn to $(12,0)$ or from (a) (iii) 45 (m) or 45 ± 0.5 if read from the graph. (iv) Using $y = 30$ (e.g. 0.6 to 0.8 and/or 9.3 to 9.5 seen) (distance travelled =) 8.5 to 8.9 (m) (c)(i) $(p =) 49$ (ii)(a) 49 (m) cao	Condone inaccuracies of up to 1 mm in plotting and drawing. If plots are not visible, allow P marks if curve passes within 1 mm of correct plot. Both P and dep C marks can be recovered following a grossly wrong plot if the plot is ignored and the curve passes within 1 mm of the correct point. Lined or plain paper used: no penalty, extend tolerances to 2 mm. Penalties deducted from P and C marks only: Wrong scale(s) -1 once. Interchanged axes: no penalty if labelled, -1 otherwise. Non-uniform scale: -2 after marking as generously as possible. (a) $(x =)12$ or -2 After B0, correct factors of their quadratic or their $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ M1 (b) (i) All 6 given points plotted. 4 correct points P1 Smooth curve, not grossly thick, through all plotted points, dep on P1 (ii) Curve drawn to $(12,0)$ or f from (a) (iii) Curve drawn to $(12,0)$ or f from (a) (iv) Using f and f are in the graph. (iv) Using f and

Page 9	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

uestion		Sub	Comments
umber		(part) mark	
9	$ (a) \begin{pmatrix} 0 \\ -2 \end{pmatrix} $	B1 (1)	
	(b)(i)(a) - b	BI	
	(b) $2(b-a) \text{ or } 2b-2a$	ВІ	
	(c) $2\mathbf{a}$ or their(a) + $3\mathbf{a} + \mathbf{b} - \mathbf{a} \checkmark$	ві√	Must be simplified.
	(d) $\mathbf{a} \text{ or } -2\mathbf{b} + 3\mathbf{a} + \text{ their (b)} \checkmark$	BIV (4)	Must be simplified
	(ii)(a) Trapezium dep on the ans. a in (i)(d) Two sides (AD, BC) // also dep on the ans. a in (i)(d)	BI BI (2)	
	(b) 1:2:3 cao independent (c) In this part give -1 once for omission of appropriate reason.	B1 (1)	
	(i) $(C\widehat{E}A=)$ 146 (°): Angle in the same segment.	BI	Or opposite angles of cyclic quads AOCF and AECF
	(ii) ($\widehat{CBA} = $) 73 (°): Angle at the centre twice angle at circumf.	B1	
	(iii) ($\widehat{CFA} = 34$ (°): Angles in opposite segments supplementary	ві	May have been justified in (i)
	(iv) ($D\widehat{C}F = 73$ (°) or $180 - (\text{their}(ii) + \text{their}(iii))$ Opposite angles in a cyclic quad and/or angle sum of a triangle.	BI \(\square \)	
	(anw 3)	(12)	

Page 10	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

Question Number		Sub (part)	Comments
10	The general instructions given in Q8 apply here.	mark	
	(a)(i) $4 \times 75 + 56 \times 125 + 84 \times 175 + 76 \times 225 + 36 \times 275 + 4 \times 325$ condone consistent use of other value in each interval, and one error or omission	МІ	
	50300 (g) oe cao	Al	
	(ii) 193 (g) (accept 192.5 to 193.5) or their (i) ÷ 260 ✓	ві 🗸	
	After M0 in (a), 50300 soi SC1	(3) B1	E.g. if the answer only is given here, the mark is B1 + SC1.
	(b) (i) (0 4 60) 144 220 256 (260)	(1)	
	(ii) All 7 points plotted \checkmark	P2 /	
	5 points plotted P1	1	
	Smooth curve, not grossly thick, through all plotted points, dep on P1 and ogive shape	(3)	
	(iii)(a) 190.0 to 197.5 (g) clearly intended as the answer.	B1 (1)	
	(b) Intention to read graph at 65 and 195 e.g. 152.5 to 157.5 and 230 to 235 seen	MI	
	(1.Q. range =) 72.5 to 82.5 (g)	A1 (2)	
	(c) 260 – 144 (table value) (= 116)	M1 A1 (2)	
	5 (sacks)	(12)	

Page 11	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2007	4024	02

uestion umber	Sub (part) mark	Comments
(a)(i) $\sqrt{(2-4)^2 + (9-6)^2}$ oe 3.61 or better (3.605) (ii) $3x + 2y = 24$ or any 3 term equivalent After B0, $m = \frac{-3}{2}$ or $c = 12$ soi	M1 A1 (2)	e.g. $y = -\frac{3}{2}x + 12$
or their line through (2,9) or (4,6)	1	
(b)(i) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	(2) B1	
	(1)	
(ii) Reflection in the line $y = x$	M1 A1	And no other transformation stated.
	(2)	
(iii)(a) $\begin{pmatrix} -3 \\ -3 \end{pmatrix}$	В1	
(0 -1)(h) (-3)	(1)	
(b) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix} + \begin{pmatrix} -3 \\ -3 \end{pmatrix}$ seen dep on T1	В1	
	(1)	
(c) $(h,k) = (-k-3, h-3)$ oe soi h = 0 and $k = -3$	M1 A1	Method mark must be earned here.
	(2)	
(d) $(0,-3)$ or (their h , their k)	Bi \	Allow either.
	(12)	