UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	e 2 Mark Scheme: Teachers' version		Paper
GCE O LEVEL – October/November 2011		4024	12

Abbreviations

cao correct answer only cso correct solution only

dep dependent

ft follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

www without wrong working

soi seen or implied

Qu	Answers	Mark	Part marks
1	(a) $\frac{35}{36}$	1	
	(b) 0.4	1	
2	(a) 18	1	
	(b) $1\frac{3}{4}$ (hours), 6 500 (seconds), 110 (minutes)	1	
3	(a) 6	1	
	(b) 5	1	
4	(a) 0 cao	1	
	(b) $2x-3$	1	
5	(a) 4.2×10^{-5}	1	
	(b) 2.1×10^7	1	
6	(a) $(x) > 6$ cao	1	
	(b) -5	1	
7	(a) $\frac{15}{16}$	1	
	(b) $8x^6$ cao	1	
8	(a) 25	1	
	(b) $57 - 2^n + n$ oe	1	
9	(a) $\frac{180}{p+1}$	1	
	(b) $2p + 2$, or any equivalent	1	

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2011	4024	12

10	OR B A C	2	or C1 for A inside B or C1 for C intersecting B, but not A (if A drawn) or for C inside B and not intersecting A (if A drawn)
11	$\sqrt{(110-0.2(0)\times370)}$ as the first line of working	M1	or B1 for two of 110, 0.2(0), 370 seen or C1 for 6(.0)(0) www, following other approximations or without any working or B1 for 74
	(±) 6 www	A1	
12	20	2	or C1 for 12 or M1 for 8 × 2.5 oe; or for 8 + 8 × 1.5 oe
13	(a) 15 oe	1	
	(b) 12 oe	1	
	(c) $\frac{60}{n}$	1	
14	(a) 94°	1	
	(b) 133°	1	
	(c) 43°	1ft	ft (180 – their(a))/2
15	(a) correct ruled line	1	
	(b) $\frac{7}{15}$ cao	1	
	(c) 240	1	
16	(a) 4	1	
	(b) rectangles base 4 to 5, height 4 base 5 to 8, height 1	1 1	

Page 4	Page 4 Mark Scheme: Teachers' version		Paper
	GCE O LEVEL – October/November 2011	4024	12

17	(a) 57.5	1	
	(b) 23 www	2ft	ft 4 × their(a) / 10or M1 for 4 × figs 575, or 4 × figs {their(a)} with no further working except conversion to cm
18	(a) (0)6 18 (h)	1	Accept (0)6:18; (0)6.18; or similar.
	(b) $26\frac{2}{3}$	2	or M1 for $\frac{200}{7.5}$ oe
			or M1 for $\frac{150 + \text{their second distance}}{7.5}$
19	x = 9 and $y = -6$	3	or C2 for one answer correct www; or C1 for a pair of values that fits either equation, provided that this pair has been obtained by the method of substitution, equal coeffs., or matrices/determinants and not by trial and error.
20	(a) $180 - x - y$ or $180 - (x + y)$ only	1	
	(b) $3\frac{3}{4}$ or any equiv.	1	
	(c) $\frac{9}{16}$	1	
21	(a) (-) 5	1	
	(b) 3 400	2	or M1 for clearly trying to find the correct area.
22	(a) $\begin{pmatrix} 11 & -6 \\ -1 & -2 \end{pmatrix}$ (b) $\begin{pmatrix} \frac{1}{2} & 1 \\ \frac{1}{2} & 2 \end{pmatrix}$ or $\frac{1}{2} \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}$	2	or C1 for 3 or 2 correct elements
	(b) $\begin{pmatrix} \frac{1}{2} & 1 \\ \frac{1}{2} & 2 \end{pmatrix}$ or $\frac{1}{2} \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}$	2	or B1 for det A = 2, or for $k \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}$ oe

Page 5	age 5 Mark Scheme: Teachers' version		Paper
GCE O LEVEL – October/November 2011		4024	12

(b) Using factors: $both - 15 \text{ and } \frac{1}{2} \text{ from correct factors}$ $3 \text{ or } \mathbf{C2} \text{ for one correct value from correct factors}$ $or \mathbf{B1} \text{ for the factors } (2y-1) \text{ and } (y+15)$ $seen but not necessarily multiplied together$ $If a clear, incorrect pair of linear factors is used, then award \mathbf{C1} for each correctly obtained ft solution, possibly unsimplified -(\max. \text{ of } 2 \text{ marks}). Using the formula: for \frac{p \pm (\text{or } + \text{and } - 1)\sqrt{q}}{r} 1 \text{ for all three of } p = -29, r = 4 \text{ (or } 2 \times 2), \text{ and } q = 961 \text{ (or } \sqrt{q} = 31 \text{ from } q = 961) 1 \text{ or } M1 \text{ for an attempt at } \sum fx, \text{ possibly}$	23	(a) $(3x-1)(3x+1)$	1	
both -15 and $\frac{1}{2}$ from correct factors 3 or C2 for one correct value from correct factors or B1 for the factors $(2y-1)$ and $(y+15)$ seen but not necessarily multiplied together If a clear, incorrect pair of linear factors is used, then award C1 for each correctly obtained ft solution, possibly unsimplified $-(\max, of 2 \max s)$. Using the formula: for $\frac{p \pm (\text{or} + \text{and} - \sqrt{q}}{r}$ 1 for all three of $p = -29$, $r = 4$ (or 2×2), and $q = 961$ (or $\sqrt{q} = 31$ from $q = 961$) 1 $\frac{1}{2}$ www 1 $\frac{1}{2}$ www 1 $\frac{1}{2}$ or M1 for an attempt at $\sum fx$, possibly				
factors or B1 for the factors $(2y-1)$ and $(y+15)$ seen but not necessarily multiplied together If a clear , incorrect pair of linear factors is used, then award C1 for each correctly obtained ft solution, possibly unsimplified – (max. of 2 marks). Using the formula: for $\frac{p \pm (\text{or} + \text{and} -)\sqrt{q}}{r}$ 1 for all three of $p = -29$, $r = 4$ (or 2×2), and $q = 961$ (or $\sqrt{q} = 31$ from $q = 961$) 1 $\frac{1}{2}$ www 1 $\frac{1}{2}$ www 1 $\frac{1}{2}$ or M1 for an attempt at $\sum fx$, possibly				
seen but not necessarily multiplied together If a clear , incorrect pair of linear factors is used, then award C1 for each correctly obtained ft solution, possibly unsimplified – (max. of 2 marks). Using the formula: for $\frac{p \pm (\text{or} + \text{and} -)\sqrt{q}}{r}$ 1 for all three of $p = -29$, $r = 4$ (or 2×2), and $q = 961$ (or $\sqrt{q} = 31$ from $q = 961$) 1 $\frac{1}{2}$ www 1 $\frac{1}{2}$ www 1 $\frac{1}{2}$ or M1 for an attempt at $\sum fx$, possibly		both -15 and $\frac{1}{2}$ from correct factors	3	
is used, then award C1 for each correctly obtained ft solution, possibly unsimplified – (max. of 2 marks). Using the formula: $ for \frac{p \pm (\text{or} + \text{and} -)\sqrt{q}}{r} $ 1 for all three of $p = -29$, $r = 4$ (or 2×2), and $q = 961$ (or $\sqrt{q} = 31$ from $q = 961$) 1 $ \frac{1}{2} \text{ www} $ 1 $ \frac{1}{2} \text{ www} $ 1 $ \frac{1}{2} \text{ www} $ 1 $ \frac{1}{2} \text{ or } \text{M1 for an attempt at } \sum fx \text{ , possibly} $				seen but not necessarily multiplied
for $\frac{p \pm (\text{or} + \text{and} -)\sqrt{q}}{r}$ 1 for all three of $p = -29$, $r = 4$ (or 2×2), and $q = 961$ (or $\sqrt{q} = 31$ from $q = 961$) 1 $\frac{1}{2}$ www 1 $\frac{1}{2}$ www 1 $\frac{1}{2}$ www 1 $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{8}{2}$				is used, then award C1 for each correctly obtained ft solution, possibly unsimplified
		Using the formula:		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		for $\frac{p \pm (\text{or} + \text{and} -)\sqrt{q}}{r}$	1	<u> </u>
24 (a) 0 (b) 1 (c) $1.6 \text{ or } 1\frac{3}{2} \text{ or } \frac{8}{2}$ 1 2 or M1 for an attempt at $\sum fx$, possibly		-15 www	1	
(b) 1 (c) $1.6 \text{ or } 1^{\frac{3}{2}} \text{ or } \frac{8}{2}$ or M1 for an attempt at $\sum fx$, possibly		$\frac{1}{2}$ www	1	
(c) $1.6 \text{ or } 1 - \text{ or } \frac{8}{2}$ or M1 for an attempt at $\sum fx$, possibly	24	(a) 0	1	
(c) $1.6 \text{ or } 1\frac{3}{5} \text{ or } \frac{8}{5}$ or $\frac{8}{5}$		(b) 1	1	
implied by sum of the		(c) $1.6 \text{ or } 1\frac{3}{5} \text{ or } \frac{8}{5}$	2	or M1 for an attempt at $\sum fx$, possibly implied by sum = 64.
25 (a) $x > 2$ oe 1 if zero scored, then C1 for $x cdots 2$ oe	25	(a) $x > 2$ oe	1	if zero scored, then C1 for $x \dots 2$ oe
$x+y < 12\frac{1}{2}$ oe and $x+y$ $12\frac{1}{2}$ oe with incorrect (in)equalities for ""		$x + y < 12\frac{1}{2}$ oe	1	4
(b) (i) (9,3)		(b) (i) (9, 3)	1	
(ii) 4 1		(ii) 4	1	
26 (a) correct triangle 1	26	(a) correct triangle	1	
(b) (i) one or two st. line(s), parallel to AC , 2.5 cm from AC			1	
(ii) bisector of angle ABC 1		(ii) bisector of angle ABC	1	
(c) $PQ = 5.4$ to 5.7 dep. on correct loci in (b)		(c) $PQ = 5.4 \text{ to } 5.7$	1	dep. on correct loci in (b)

Page 6	ge 6 Mark Scheme: Teachers' version		Paper
GCE O LEVEL – October/November 2011		4024	12

27	(a) (i)	270°	1	
	(ii)	(2, 0)	1	
	(b) (i)	2 cao	1	
	(ii)	x = -1 oe	1	
28	(a) (i)	$-\mathbf{p} + \mathbf{q}$ oe	1	
	(ii)	$-4\mathbf{p} + 2\mathbf{q}$ oe	1	
	(b) (i)	$3\mathbf{p} + k(-4\mathbf{p} + 2\mathbf{q})$ oe	1ft	ft $3\mathbf{p} + k \times \text{their (a)(ii)}$
	(ii)	$c \times \text{their}(\mathbf{a})(\mathbf{i}) = \text{their}(\mathbf{b})(\mathbf{i}) \text{ oe}$ where $c \neq k$, $\frac{1}{k}$, or 1, provided their (b)(i) consists of a vector expression and k .	M1ft	or C1 for 1.5 oe, with no appropriate working, and no wrong working
		1.5 oe	A1	