

Cambridge International Examinations

Cambridge Ordinary Level

MATHEMATICS (SYLLABUS D)

4024/11

Paper 1

October/November 2016

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level – October/November 2016	4024	11

Qu	estion	Answers	Mark	Part marks
1	(a)	$\frac{17}{30}$ h	1	
	(b)	(0).0033	1	
2	(a)	7	1	
	(b)	30	1	
3	(a)	$\frac{13}{40}$ cao	1	
	(b)	$\frac{7}{20} \frac{9}{25} 0.38 0.4$	1	
4	(a)	4.8(0)	1	
	(b)	24	1	
5	(a)	360 cao	1	
	(b)	4	1	
6		15	2 *	B1 for "k" = -150 provided $y =$ "k"/ x is used. or M1 for $-50 \times 3 = -10y$ oe or M1 for $y = (their k)/(-10)$ when $y =$ "k"/ x is used.
7		40	2 *	M1 for $\frac{360}{180-171}$; or $171n = 180(n-2)$ oe
8	(a)	7	1	
	(b)	$\frac{4y}{3x}$; or $\frac{4yx^{-1}}{3}$	1	
9	(a)	0.155 cao	1	
	(b)	20 WWW	1 *	
10	(a)	4.5 × 10 ⁸	1	
	(b)	3 × 10 ⁹	2 *	C1 for $A \times 10^9$ with $1 \le A < 10$; or for 3×10^{11} or B1 for 0.3×10^{10}

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge O Level – October/November 2016	4024	11

			I	
11	(a)	0.35 oe	1	
	(b)	3 - 10x oe	2 *	C1 for $10x - 3$ or B1 for $10 \text{ "}y\text{"} = 3 - \text{"}x\text{"}$
12	(a) (i)	9	1	
	(ii)	89	1	
	(b)		1	
13	(a)	0.5 oe	1	
	(b)	$\frac{2}{3}$ oe	1 *	
	(c)	(-) 8	1	
14	(a)	2.7 oe	2 *	M1 for $\frac{BC}{6} = \frac{1.8}{4}$ oe
	(b)	$\frac{4}{5}$ oe	1 *	
15	(a)	Rotation 90° clockwise oe, centre (3, 1)	1 1	Mark lost if a second transformation is named.
	(b)	vertices: (-2, 4), (-4, 0), (-4, 4)	2 *	B1 for two correct vertices, or for vertices (2, 0), (4, 0), (4, 4)
16	(a)	5(1-2t)(1+2t)	2 *	C1 for $(1-2t)(1+2t)$ or B1 for one of $5(1-4t^2)$; (5+10t)(1-2t); $(5-10t)(1+2t)$
	(b)	(3y-2x)(y+3)	2 *	B1 for one of the partial factorisations $y(3y-2x)$; $2x(y+3)$; $3(3y-2x)$; $3y(y+3)$; or their negatives, seen.

Page 4	Mark Scheme		Paper
	Cambridge O Level – October/November 2016	4024	11

	T		
17 (a)	57°	1	
(b)	33°	1	
(c)	FT 180° – their (a); or 123°	1 *√	
(d)	220°	1	
18	Correctly equating one pair of coefficients or expressing one variable in terms of the other.	* M1	
	A correct method to eliminate one variable.	M1	
	Either $x = -4$ or $y = 2$ WWW.	A1	If [0] earned, then award C1 for a pair of
	Both $x = -4$ and $y = 2$ WWW.	A1	values that satisfies either equation.
	, and the second		If only M1 + M1 earned, then award B1 for a <i>correct</i> substitution of their first solution into one, or a <i>correct</i> linear combination of both, of the <i>original</i> equations.
19 (a)	the point P marked correctly	1	
(b)	the point Q marked correctly	1	
(c)	−a − 2 b oe	2	C1 for $-\mathbf{a}$; or for $-2\mathbf{b}$
20 (a)	125° to 129°	1	
(b) (i)	correct arc	1	
(ii)	correct straight line	1	
(iii)	PD =3.4 to 3.8 cm WWW	1 dep	Dependent on correct types of loci, that intersect.
21 (a)	$\begin{pmatrix} 0 & -5 \\ 7 & 9 \end{pmatrix}$	2	C1 for 2 or 3 correct elements; or for 3 or 4 elements of $\begin{pmatrix} 12 & -1 \\ -1 & 9 \end{pmatrix}$.
(b)	$\frac{1}{7} \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}; \text{ or } \begin{pmatrix} \frac{3}{7} & \frac{1}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{pmatrix}; \text{ or any}$ equivalent seen	2 *	C1 for $\frac{1}{7}\begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix}$; or for $k\begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$, $k \neq \frac{1}{7}$
(c)	equivalent seen $ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	1	

Page 5	Mark Scheme		Paper
	Cambridge O Level – October/November 2016	4024	11

22	(a)	10.4 or any equivalent	2 *	M1 for $\frac{v-4}{8} = \frac{8}{10}$ oe or B1 for 6.4 oe; or for 1.6 oe; seen
	(b)	80	2 *	C1 for 140 or M1 for $10 \times (4 + 12)/2$ oe
	(c)	Curve, concave upwards, from (0, 0) to (10, their(b)	1 √^	independent
		Straight line from (10, their(b)) to (15, 60 + their(b))	1 √	independent
23	(a)	7, 21	1	
	(b)	2n-1 oe	1	
	(c)	FT $3 \times their$ (b) provided this is a function of n ; or $6n - 3$ oe	1 √	
	(d) (i)	48	1	
	(ii)	$3n^2$	2 *	M1 for a sensible method, e.g. writing terms as 3×1 , 3×4 , 3×9 , or B1 for $An^2 + Bn + C$, $A \ne 0$ from a valid method.
24	(a)	(9, 2)	1	
	(b)	x < 9 oe	1	In (b), if [0] scored for $x < 9$ and $y > 2$ then
		y > 2 oe	1	C1 for both $\{x 9 \text{ or } x \text{ their}(9)\}$ and $\{y 2 \text{ or } y \text{ their}(2)\}$
		x-y > 3 oe	1	
	(c)	a = 8	1	1 () '6[0] 14
		b=4	1	In (c), if [0] scored then C1 for $a = 4$ and $b = 8$; or for $a = 6$ and $b = 3$.