MARK SCHEME for the May/June 2006 question paper

9702 PHYSICS

9702/06

Paper 6

Maximum raw mark 40

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page	age 1 Mark Scheme		Syllabus					
			GCE A – May/June 2006	9702	06	;			
Ор	Option A - Astrophysics and Cosmology								
1	Plai	net:	almost circular orbits all in nearly the same plane		B1 B1				
	Cor	net:	highly elliptical orbits in many different planes		B1 B1	[4]			
2	(a)		an) density natter in the Universe		M1 A1	[2]			
	(b)	(i)	symmetrical curve below given line touching given line at 'present time'		M1 A1	[2]			
		(ii)	H_0 not known with any certainty mass of matter in the Universe not known extent of Universe unknown (allow 1 of the last 2 marks for ρ_0 not known)	ļ	B1 B1 B1	[3]			
3	1.3 v =	\times 10 H_0d	ear = 0.306 pc (allow 0.3 pc) ¹⁰ light-years = 3.98×10^3 Mpc $60 \times 3.98 \times 10^3 = 2.39 \times 10^5$ km s ⁻¹		C1 C1 C1				
	ratio	C	= $(2.39 \times 10^5 \text{ x } 10^3)/(3.0 \times 10^8)$ = 0.8		A1	[4]			
4	-		t expense could be spent on humanitarian aid		(M1) (A1)				
	observations possible that cannot be made on Earth since atmosphere limits observations								
	tecł grea leac		(M1) (M1) (A1)						
	Any	/ sen	sible comments, 1 each to max 5	I	B5	[5]			
Ор	tion	F - T	he Physics of Fluids						
5	(a)	con	servation of volume/mass/density or incompressible	I	B1	[1]			
	(b)	cor	servation of energy	I	B1	[1]			
6	(a)	higł	near jet is moving at speed ner speed air has a lower OR water in jet is moving at spe OR high-speed water has lower		B1 B1				
		(be	ssure cause) air is dragged along by OR air is drawn into water jet	I	B1				
			er jet outside pump) is not moving OR loss of air reduces pressure	I	B1	[4]			
	(b)	(i)	air/water in pump has a higher speed so greater pressure difference		M1 A1	[2]			

Γ	Page	e 2	Mark Scheme	Syllabus	Pa	aper
			GCE A – May/June 2006	9702		06
		(ii)	no change in speed of air so no change in pressure difference or ρ in Berro OR greater pressure difference or ρ in	-	M1 A1	[2]
			(allow any logical argument based on liquid causing more/less of	drag on air)		
7	(a)		y currents have kinetic energy OR cause extra drag y currents caused by		M1	
			vement of the car OR energy required to overcome a energy (of eddy currents) is derived from car's fuel	-	A1 A1	[3]
	(b)	(i)	power = force × speed so power = $\frac{1}{2}C_{\rm D}A\rho v^2 \times v$ and A and ρ are constants		B1 B1	[2]
		(ii)	$84 \times 10^3 = \frac{1}{2} \times 0.34 \times 1.8 \times 1.1 \times v_{max}^3$ $v_{max} = 63 \text{ m s}^{-1}$		C1 A1	[2]
		(iii)	$P = \frac{1}{2} \times 0.34 \times 1.8 \times 1.1 \times (63 + 9)^{3}$ P = 126 kW ratio = 126 / 84 = 1.5		C1 C1 A1	[3]
С	ption	м -	Medical Physics			
8	(a)	app cau	rnating voltage lied across (piezo-electric) crystal ses crystal to vibrate stal dimensions such as to give resonance (in US range)		B1 B1 B1 B1	[4]
	(b)		velength at 1 MHz is shorter greater detail is possible		B1 B1	[2]
9	e.g		d as a scalpel (1) ner detail: causes (explosive) vaporisation of intracellular water CO ₂ laser (1) IR radiation strongly absorbed by water (1) laser beam focused to give high power density (1) no/very little bleeding (1) accurate guidance (1)	(1)		
	e.g		air of retina (1) ner detail: focused laser beam onto retina (1) melts tissue and forms a weld (1) (pulsed) ruby or argon laser (1)			
		any	two examples: named (1) plus further detail (2)		B 6	[6]
	(alle	ow u	p to two marks for each diagnostic technique)			
1	0 (a)	whe valu	imum intensity (of sound) detected ere intensity = (sound) power per unit area at a stated frequency ie is 1×10^{-12} W m ⁻² kHz (allow 2 kHz \rightarrow 3 kHz)		M1 A1 B1 B1	[4]

Page 3		3	Mark Scheme	Syllabus	Рар	er
			GCE A – May/June 2006	9702	06	;
	(b)	(i)	intensity = $(0.14 \times 10^{-6})/(54 \times 10^{-6}) = 2.6 \times 10^{-3} \text{ W m}^{-2}$ <i>IL</i> = 10 lg $(2.6 \times 10^{-3})/(1 \times 10^{-12})$ = 94 dB		C1 C1 A1	[3]
		(ii)	comment e.g. would be perceived as being loud could cause tinnitus over a short period of time could cause deafness over a long period of time higher level than is acceptable in the workplace			
			any appropriate comment, 1 mark		B1	[1]
Opt	tion	Ρ-	Environmental Physics			
11	(a)	wat at ti	mes of low usage of electrical power er pumped from low-level to high-level reservoir mes of high/sudden demand for electrical power er released to pass through turbines		B1 B1 B1 B1	[4]
	(b)	ene 1.5	trical energy generated = $78 \times 10^6 \times 4.0 \times 3600 = 1.12 \times 10^{12} \text{ J}$ rgy to be stored = $(1.12 \times 10^{12})/0.75 = 1.5 \times 10^{12} \text{ J}$ $\times 10^{12} = \rho Vgh$ $= 1.0 \times 10^3 \times V \times 9.8 \times 95$ $1.6 \times 10^6 \text{ m}^3$		C1 C1 C1	741
		<i>v</i> –	1.6 × 10 III		A 1	[4]
12	(a)	(tha	it is impossible to convert all of a given amount of thermal energy t is) $W < Q_H$ - W) is energy rejected at temperature T_L		B1 B1 B1	[3]
	(b)	W/C	$Q_{\rm H} = 1 - T_{\rm L}/T_{\rm H}$		B1	[1]
	(c)	effic	tiency = 1 – 313/393 = 0.20		C1 A1	[2]
13	(a)	(i)	e.g. industry setting up people preparing to go to work starting to cook breakfast			
			(allow any two sensible suggestions, 1 each)		B2	[2]
		(ii)	e.g. change in temperature with use of heaters/air conditioning holiday or workday with more power used by industry when not o	on holiday		
			(allow any two sensible suggestions, 1 each)		B2	[2]

	Page 4		Mark Scheme	Syllabus	Paper	
			GCE A – May/June 2006	9702	06	
	(b)	(i)	sudden increase in demand (as appliances are used)	E	81	
		(ii)	increased demand in the afternoon	E	81 [2]	
		(alle	ow any two sensible suggestions in (i) and (ii))			
O	otion	т-	Telecommunications			
14	(a)		tantaneous) displacement of information signal ermines the frequency of the carrier wave		M1 \1 [2]	
	(b)	(i)	12 V	E	81 [1]	
		(ii)	650 kHz	E	81 [1]	
		(iii)	550 kHz	E	81 [1]	
		(iv)	3000	E	81 [1]	
15	(a)	ana	logue-to-digital converter (do not allow ADC)	E	81 [1]	
	(b)	con	trols the time at which samples are taken	E	81 [1]	
	(c)	ena	bles higher frequency components in signal to be 'detected'	E	81 [1]	
16	6 (a)		ctromagnetic shielding for the inner conductor braid is earthed		81 81 [2]	
	(b)	SO I	reased bandwidth means more information can be carried more calls can be transmitted simultaneously er links are required	E	81 81 81 [3]	
17	' (a)	inte	cross-talk/cross-linking rference/picking up atmospherics/picking up man-made radiatior te noise associated with vibrating atoms	١		
		(an	y two, 1 each)	E	32 [2]	
	(b)	(i)	number of dB = 10 lg (P_2/P_1) 35 = 10 lg $(P/{7.6 \times 10^{-6}})$ P = 0.024 W		;1 \1 [2]	
		(ii)	number of dB = 10 lg (2.6/0.024) = 20.3 length = 20.3/5.8 = 3.5 km		;1 \1 [2]	