MARK SCHEME for the May/June 2007 question paper

9702 PHYSICS

9702/02

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2			Mark Scheme	Syllabus	Paper 2	
				GCE A/AS LEVEL – May/June 2007	9702		
1	(a)	(i)	posi	ositions (accept 20, 40, 60, 80) marked to within $\pm 5^{\circ}$ tions are 40°, 70°, 90° and 102° or each error or omission)		B2	
		(ii)	allov	v 107° \rightarrow 113°		B1	[3]
	(b)	-		re sensitive at <u>low</u> volumes allow reference to 'accuracy')		B1	[1]
2	(a)	forc	e <u>per</u>	<u>unit positive</u> charge (on a small test charge)		B1	[1]
	(b)	field	d stre	ngth = (210/{1.5 \times 10 ⁻² } =) 1.4 \times 10 ⁴ N C ⁻¹		A1	[1]
	(c)	(i)		eleration = Eq / m = $(1.4 \times 10^4 \times 1.6 \times 10^{-19}) / (9.1 \times 10^{-31})$ = 2.5×10^{15} m s ⁻² (2.46×10^{15}) ards positive plate / upwards (and normal to plate)		C1 C1 A1 B1	[4]
		(ii)	time	= 2.4 × 10 ⁻⁹ s		A1	[1]
	(d)	= ½ = 7 (0.7 <i>i.e.</i> or <i>t</i> is (2.4	2 × 2.4 7.1 × 7 71 cm <i>valid</i> 0.7 time t 1 ns <	rtical displacement after acceleration for 2.4×10^{-9} s $46 \times 10^{15} \times (2.4 \times 10^{-9})^2$ 10^{-3} m < 0.75 cm and) so will pass between plates <i>I conclusion based on a numerical value</i> $75 \times 10^{-2} = \frac{1}{2} \times 2.46 \times 10^{15} \times t^2$ to travel 'half-way across' plates = 2.47×10^{-9} s = 2.47 ns) so will pass between plates <i>I conclusion based on a numerical value</i>		C1 A1 A1 (C1) (A1) (A1)	[3]
3	(a)	ma	ss / vo	olume (ratio idea essential)		B1	[1]
	(b)	(i)	mas	$s = Ah\rho$		B1	[1]
		(ii)	weig	sure = force/area ht (of liquid)/force (on base) = $Ah\rho g$ sure = $h\rho g$		B1 B1 A0	[2]
	(c)	(i)	ratio	= 1600 or 1600:1		A1	[1]
		(ii)	ratio	$= \sqrt[3]{1600}$ = 11.7 (allow 12)		C1 A1	[2]

	Page 3		3Mark SchemeSyllabusGCE A/AS LEVEL – May/June 20079702			Paper 2	
					9702		
	(d)	(i)	dens	sity of solids and liquids are (about) equal		B1	[1]
		(ii)	rigid	ng forces: fixed volume forces: retains shape / does not flow / little deformatic w 1 mark for fixed volume, fixed shape)	n	B1 B1	[2]
4	(a)	(i)	= 0.0	nge in) potential energy = mgh 056 × 9.8 × 16		C1	101
			= 8.7	78 J (<i>allow 8.8</i>)		A1	[2]
		(ii)	(initia	al) kinetic energy = $\frac{1}{2}mv^2$		C1	
				$= \frac{1}{2} \times 0.056 \times 18^{2}$ = 9.07 J (allow 9.1)		C1	
			total	kinetic energy = $8.78 + 9.07 = 17.9 \text{ J}$		A1	[3]
	(b)			$hergy = \frac{1}{2}mv^2$			
		17.9	9 = 1/2	$\times 0.056 \times v^2$ and $v = 25(.3) \text{ m s}^{-1}$		B1	[1]
	(c)	hori	zonta	al velocity = 18 m s ⁻¹		B1	[1]
	(d)	(i)		ect shape of diagram sides of right-angled triangle with correct orientation)		B1	
		(ii)	-	e = $41^{\circ} \rightarrow 48^{\circ}$ (allow trig. solution based on diagram) angle $38^{\circ} \rightarrow 41^{\circ}$ or $48^{\circ} \rightarrow 51^{\circ}$, allow 1 mark)		A2	[3]
5	(a)	(i)	vibra	ation <u>s</u> (in plane) <u>normal</u> to direction of energy propaga	tion	B1	[1]
		(ii)	vibra	ations in <u>one</u> direction (normal to direction of propagation	on)	B1	[1]
	(b)	(i)	max	displacement) antinodes / where there are no he imum amplitude (of vibration)		B1	
				lisplacement) nodes/where there are heaps, amplitud /minimum	de of vibration is	B1	
				is pushed to / settles at (displacement) nodes		B1	[3]
		(ii)	252	= 39 cm		C1	
		(11)	v = f			C1	
				$2.14 \times 10^3 \times 15.6 \times 10^{-2}$			101
			= 3	334 m s⁻¹ (<i>allow 330, not 340</i>)		A1	[3]
	(c)	Stationary wave formed by interference / superposition / overlap of					
		<i>either</i> wave travelling down tube and its reflection <i>or</i> two waves of same (type and) frequency travelling in opposite directions				B1	
				the speed of the incident / reflected waves		B1	[3]

	Page 4	4	Mark Scheme	Syllabus	Paper		
			GCE A/AS LEVEL – May/June 2007 9702		2		
6	(a) (i)		otal resistance = 0.16 Ω a.m.f. = <i>either</i> (14 – <i>E</i>) or (<i>E</i> – 14)		A1 A1	[2]	
	(ii)		er $14 - E = 42 \times 0.16$ or $(E - 14) = -42 \times 0.16$ 7.3 V		C1 A1	[2]	
	(b) (i)	= 12	ge = It 2.5 × 4 × 60 × 60		C1	101	
		= 1.	$8 \times 10^5 \text{ C}$		A1	[2]	
	(ii)	eithe eithe	ther energy = EQ or energy = Eit ther energy = $14 \times 1.8 \times 10^5$ or energy = $14 \times 12.5 \times 10^5$	4 × 3600	C1		
			$= 2.52 \times 10^6 \text{ J}$		A1	[2]	
	(iii)	ener	$gy = I^2 Rt or Vit \text{ and } V = IR$ $= 12.5^2 \times 0.16 \times 4 \times 3600$		C1		
			$= 3.6 \times 10^5 \text{ J}$		A1	[2]	
	(c) eff	(c) efficiency = $(2.52 \times 10^6 - 3.6 \times 10^5)/(2.52 \times 10^6)$ = 86%					
7	(a) β(-	decay)		B1	[1]	
		her ar	r any two of Z, N and A do not change		B1		
	or or	it	is loss of energy only is an electromagnetic wave	har cannot be about as the	B1	[2]	
	dia	Allow ' α (-decay) as change of 4 in the nucleon number cannot be shown on the diagram' Do not give credit for a 'bald' α (-decay)					