MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions)

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2010	9702	22	
1	(a)	micron	eter/screw gauge/digital callipers		B1	[1]
	(b)	(i) loc	ok/check for zero error		B1	[1]
			ke several readings		M1 A1	[2]
2	(a)	consta straigh	tial speed is zero nt acceleration t line motion <i>vo, one mark each</i>)		B2	[2]
	(b)	0.7 t =	= $\frac{1}{2}a t^2$ 79 = $\frac{1}{2} \times 9.8 \times t^2$: 0.40 s allow 1 SF or greater or 3 SF answer		C1 A1 A1	[3]
		0.9 t =	stance travelled by end of time interval = 90 cm $90 = \frac{1}{2} \times 9.8 \times t^2$ 0.43 s allow 2 SF or greater the interval = 0.03 s		C1 C1 A1	[3]
	(c)		sistance) means ball's speed/acceleration is less		M1 A1	[2]
3	(a)	(i) for	ce is rate of change of momentum		B1	[1]
		for	rce on body A is equal in magnitude to force on body B (fron rces are in opposite directions rces are of the same kind			[3]
	(b)		$F_{A} = -F_{B} \dots$ $t_{A} = t_{B} \dots$		B1 B1	[1] [1]
		(ii) ∆µ	$\rho = F_{A} t_{A} = -F_{B} t_{B} \dots$		B1	[1]
	(c)	final m	momentum change occurs at same times for both spheres omentum of sphere B is to the right magnitude 5 N s		B1 M1 A1	[3]
4	(a)	amplitu neighb	energy transfer ude varies along its length/nodes <u>and</u> antinodes ouring points (in inter-nodal loop) vibrate in phase, etc. <i>vo, 1 mark each to max 2</i>		B2	[2]

Pa	ge 3	Mark Scheme: Teachers' version Syllabus		r
		GCE AS/A LEVEL – May/June 2010 9702	22	
(b)		= (330 × 10 ²)/550 = 60 cm	M1 A0	[1]
	a	ode labelled at piston ntinode labelled at open end of tube dditional node and antinode in correct positions along tube	B1 B1 B1	[3]
(c)	at low λ = 1.	est frequency, length = $\lambda/4$	C1	
	freque	ency = 330/1.8 Hz	C1 A1	[3]
5 (a)	d Y	oung modulus = stress/strain ata chosen using point in linear region of graph oung modulus = (2.1 × 10 ⁸)/(1.9 × 10 ⁻³) 1.1 × 10 ¹¹ Pa	C1 M1 A1	[3]
	• •	his mark was removed from the assessment, owing to a power-of-ten neonsistency in the printed question paper.		
(b)	when this ei	between lines represents energy/area under curve represents energy rubber is stretched and then released/two areas are different nergy seen as thermal energy/heating/difference represents energy red as heat	M1 A1 A1	[3]
6 (a)		$P \propto V^2 \text{ or } P = V^2 / R$ tion = $(230^2 - 220^2) / 230^2$ = 8.5 %	C1 A1	[2]
(b)	(i) z	ero	A1	[1]
	(ii) 0	3(0)A	A1	[1]
(c)	(i) c	prrect plots to within ± 1 mm	B1	[1]
		easonable line/curve through points giving current as 0.12A Now ± 0.005A)	B1	[1]
		I = IR = 0.12 × 5.0	C1	
(d)	currer resista or cur	= 0.6(0)V acts as a potential divider/current divides/current in AC not the same as at in BC ance between A and C not equal to resistance between C and B rent in wire AC × R is not equal to current in wire BC × R statements	A1 B1 B1 B1	[2]

F	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2010	9702	22	
7 (a	a) (i)	eith or	<i>er</i> helium <u>nucleus</u> contains 2 protons and 2 neutrons		B1	[1]
	(ii)	spe cau posi	range is a few cm in air/sheet of <u>thin</u> paper ed up to 0.1 <i>c</i> ses dense ionisation in air itively charged or deflected in magnetic or electric fields <i>two, 1 each to max 2</i>)		B2	[2]
(b	o) (i)	-	<i>er</i> ¹ ₁ p <i>or</i> ¹ ₁ H		B1 B1	[2]
	(ii)	1	initially, α -particle must have some kinetic energy		B1	[1]
	(ii)		1.1 MeV = $1.1 \times 1.6 \times 10^{-13} = 1.76 \times 10^{-13}$ J $E_{\rm K} = \frac{1}{2}mv^2$ 1.76 × $10^{-13} = \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2$ $v = 7.3 \times 10^6$ m s ⁻¹ use of 1.67 × 10^{-27} kg for mass is a maximum of 3/4		C1 C1 C1 A1	[4]