UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9702	41

Section A

1	(a)		le (subtended) <u>at centre</u> of circle arc equal in length to radius	B1 B1	[2]
	(b)	(i)	point S shown below C	B1	[1]
		(ii)	(max) force / tension = weight + centripetal force centripetal force = $mr\omega^2$ 15 = 3.0/9.8 × 0.85 × ω^2 ω = 7.6 rad s ⁻¹	C1 C1 C1 A1	[4]
2	(a)	(i)	27.2 + 273.15 or 27.2 + 273.2 300.4 K	C1 A1	[2]
		(ii)	11.6 K	A1	[1]
	(b)	(i)	($< c^2 >$ is the) mean / average square speed	В1	[1]
		(ii)	$\rho = Nm/V$ with N explained so, $\rho V = 1/3 Nm < c^2 >$ and $\rho V = NkT$ with N explained so mean kinetic energy $N < N$ = N =	B1 B1 B1 B1	[4]
	(c)	(i)	pV = nRT 2.1 × 10 ⁷ × 7.8 × 10 ⁻³ = $n \times 8.3 \times 290$ n = 68 mol	C1 A1	[2]
		(ii)	mean kinetic energy = $3/2 kT$ = $3/2 \times 1.38 \times 10^{-23} \times 290$ = $6.0 \times 10^{-21} J$	C1 A1	[2]
		(iii)	realisation that total internal energy is the total kinetic energy energy = $6.0 \times 10^{-21} \times 68 \times 6.02 \times 10^{23}$ = 2.46×10^5 J	C1 C1 A1	[3]
3	(a)	(i)	to-and-fro / backward and forward motion (between two limits)	В1	[1]
		(ii)	no energy loss or gain / no external force acting / constant energy / constant an	nplitud B1	de [1]
	((iii)	acceleration directed towards a fixed point acceleration proportional to distance from the fixed point / displacement	B1 B1	[2]
	(b)		eleration is constant (magnitude) cannot be s.h.m.	M1 A1	[2]

Page 3			Mark Scheme: Teachers' version	Syllabus	Paper		
				GCE AS/A LEVEL – May/June 2010	9702	41	
4		-	do work ult of the	e position/shape, etc. of an object		B1 B1	[2]
	(b) (i)	1	$\Delta m{\mathcal{E}}_{gpe}$	= GMm/r = $(6.67 \times 10^{-11} \times \{2 \times 1.66 \times 10^{-27}\}^2) / (3.8 \times 10^{-49} \text{ J})$ = $1.93 \times 10^{-49} \text{ J}$	10 ⁻¹⁵)	C1 C1 A1	[3]
		2	$\Delta E_{ ext{epe}}$	= $Qq / 4\pi\epsilon_0 r$ = $(1.6 \times 10^{-19})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12} \times 3.8 \times 10^{-14} \text{ J}$) ⁻¹⁵)	C1 C1 A1	[3]
	(ii)	idea <i>E</i> _K =	that 2 <i>E</i> = 3.03 >	$_{K} = \Delta E_{\text{epe}} - \Delta E_{\text{gpe}}$ $< 10^{-14} \text{ J}$		B1	
			3.03 × 10 .19 MeV	$(0^{-14}) / 1.6 \times 10^{-13}$		M1 A0	[2]
	(iii)	fusio	on may o	occur / may break into sub-nuclear particles		B1	[1]
5	(a) (i) V_H depends on angle between (plane of) probe and B -field either V_H max when plane and B -field are normal to each other or V_H zero when plane and B -field are parallel					B1	
		or	V _H d	epends on sine of angle between plane and <i>B</i> -	field	B1	[2]
	(ii)		to 1 s.f.	es $V_H r$ at least three times constant so valid or approx constant so valid s.f., not constant so invalid		M1 A1	[2]
		2	straight	line passes through origin		B1	[1]
	.,.,	rate cons	of chan stant fiel	ed is proportional / equal to ge of (magnetic) flux (linkage) d in <u>coil</u> / flux (linkage) of <u>coil</u> does not change arrent (in wire) / switch current on or off / use a		M1 A1 B1	[3]
			te coil e coil <u>to</u>	wards / away from wire (1 mark each, max 3)		В3	[3]
6		all four diodes correct to give output, regardless of polarity connected for correct polarity					
	V_0	= √2	$= V_{S} / V_{rms}$			C1 C1	
	ratio = $9.0 / (\sqrt{2} \times 240)$ = $1/38$ or $1/37$ or 0.027					A1	[3]

	r age +		Mark General: reactions version	Cynabas	i apci	
			GCE AS/A LEVEL – May/June 2010	9702	41	
7	(a) arro	ow po	inting up the page		B1	[1]
	(b) (i)	V	= Bqv = $(12 \times 10^3) / (930 \times 10^{-6})$ = $1.3 \times 10^7 \text{ m s}^{-1}$		C1 C1 A1	[3]
	(ii)	q/m	= mv^2 / r = $(1.3 \times 10^7) / (7.9 \times 10^{-2} \times 930 \times 10^{-6})$ $8 \times 10^{11} \text{ C kg}^{-1}$		C1 C1 A1	[3]
8			um conservation hence momenta of photons are equal omentum so same energy	(but opposite)	M1 A1	[2]
	(b) (i)	(Δ) <i>E</i>	$ = (\Delta)mc^{2} $ $ = 1.2 \times 10^{-28} \times (3.0 \times 10^{8})^{2} $ $ = 1.08 \times 10^{-11} \text{ J} $		C1 A1	[2]
	(ii)	E λ	= hc / λ = $(6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / (1.08 \times 10^{-11})$ = 1.84×10^{-14} m		C1 A1	[2]
	(iii)	λ p	= h/p = $(6.63 \times 10^{-34}) / (1.84 \times 10^{-14})$ = 3.6×10^{-20} N s		C1 A1	[2]
			Section B			
9	(a) (i)	poin	t X shown correctly		B1	[1]
	(ii)	non-	mp has <u>very large</u> / infinite gain inverting input is at earth (potential) / earthed / at 0 V iplifier is not to saturate, inverting input must be (almos	st)	M1 M1	
			arth potential / 0 (V) same potential as inverting input	,	A1	[3]
	(b) (i)	(amp	input resistance = $1.2 \text{ k}\Omega$ polifier) gain (= $-4.2 / 1.2$) = -3.5 meter) reading = -3.5×-1.5		C1 C1	
		`	= 5.25 V I disregard of signs or incorrect sign in answer, max 2	marks)	A1	[3]
	(ii)	(amp	s bright so) resistance of LDR increases olifier) gain decreases meter) reading decreases		M1 M1 A1	[3]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 4

	Pa	ge 5	M	lark Scheme: Teachers' version	Syllabus	Paper	
			GC	CE AS/A LEVEL – May/June 2010	9702	41	
10	(a)	repeated images / combine repeated to build u	I at differen data is pro d / added to I for succes up a 3-D im	cessed o give (2-D) image of slice sive slices		B1 B1 B1 B1 B1 B1 max 6	[6]
	(b)	(i) 16				A1	[1]
		(ii) evid to gi		ducting 16 then dividing by 3		C1 A1	[2]
11	(a)			wave <u>varies</u> (in synchrony) with signal <u>displacement</u> of signal		M1 A1	[2]
	(b)		max 2) ntages e.g.	less noise / less interference greater bandwidth / better quality short range / more transmitters / line of sig more complex circuitry greater expense	ht		
		(1 each,	max 2)			B4	[4]
12	(a)		ss/dB = 10 0 lg(18 × 1			C1	
		or -190	$= 10 \lg P_2 / 1.8 \times 10^{-1}$ $: 1.8 \times 10^{-1}$	(18×10^3)		C1 A1	[3]
	(b)	(i) 11 G	GHz / 12 GH	l z		B1	[1]
		` '		ut signal to satellite will not be 'swamped' rence of uplink with / by downlink		B1	[1]