UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		GCE AS/A LEVEL – May/June 2011 9702	21	
1	(a) (i)	metre rule / tape (not 'rule')	B1	[1]
	(ii)	micrometer (screw gauge) / digital caliper	B1	[1]
	(iii)	ammeter and voltmeter / ohmmeter / multimeter on 'ohm' setting	B1	[1]
	(b) (i)	resistivity = RA / L = $[7.5 \times \pi \times (0.38 \times 10^{-3})^2 / 4] / 1.75$ = $4.86 \times 10^{-7} \Omega \text{ m}$	C1 M1 A0	[2]
	(ii)	(uncertainty in $R =$) $[0.2 / 7.5] \times 100 = 2.7\%$ and (uncertainty in $L =$) $[3 / 1750] \times 100 = 0.17\%$ (uncertainty in $A =$) $2 \times (0.01 / 0.38) \times 100 = 5.3 \%$ total = 8.13%	C1 C1 C1	
		uncertainty = 0.395×10^{-7} (Ω m) (missing 2 factor in uncertainty in A, then allow max 3/4)	A1	[4]
	(c) res	istivity = $(4.9 \times 10^{-7} \pm 0.4 \times 10^{-7}) \Omega \text{ m}$	A1	[1]
2	(a) work done is the force × the distance moved / displacement in the direction of the force			
	or wo	rk is done when a force moves in the direction of the force	B1	[1]
		mponent of weight = 850 × 9.81 × sin 7.5° = 1090 N se of incorrect trigonometric function, 0/2)	C1 A1	[2]
	(c) (i)	$\Sigma F = 4600 - 1090 = (3510)$ deceleration = 3510 / 850 = 4.1 ms ⁻²	M1 A1 A0	[2]
	(ii)	$v^2 = u^2 + 2as$ $0 = 25^2 + 2 \times -4.1 \times s$ s = 625 / 8.2	C1	
		= 76 m (allow full credit for calculation of time (6.05 s) & then s)	A1	[2]
	(iii)	1. kinetic energy = $\frac{1}{2} mv^2$ = 0.5 × 850 × 25 ² = 2.7 × 10 ⁵ J	C1 A1	[2]
		2. work done = 4600×75.7 = 3.5×10^5 J	A1	[1]
	(iv)	difference is the loss in potential energy (owtte)	B1	[1]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 2

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011	9702	21	
3			ere the weight of an object / gravitational force considered to act		M1 A1	[2]
	(b) pro	duct	of the force and the <u>perpendicular</u> distance (to the pivo	t)	B1	[1]
	(c) (i)	1.	sum / net / resultant force is zero		B1	
			net / resultant moment is zero sum of clockwise moments = sum of anticlockwise mo	ments	B1	[2]
	(ii)	W	0.2 = 80 × 0.5 + 70 × 1.3 = 40 + 91 = 655 N w 2/3 for one error in distance but 0/3 if two errors)		C1 C1 A1	[3]
	(iii)	mov	ve pivot to left		(M1)	
		_	s greater clockwise moment / smaller clockwise moment		(A1)	
		mov	re W to right es smaller anticlockwise moment		(M1) (A1)	[2]
4	(a) (i)	stre	ss is force / area		B1	[1]
	(ii)	stra	<i>in</i> is extension / <u>original</u> length		B1	[1]
	(b) (i)	e =	[F / A] ÷ [e / l̄] (25 × 1.7) / (5.74 × 10 ⁻⁸ × 1.6 × 10 ¹¹) 4.6 × 10 ⁻³ m		C1 C1 A1	[3]
	(ii)	e ∝	ecomes $A/2$ or stress is doubled ℓ / A or substitution into full formula I extension increase is $4e$		B1 B1 A1	[3]
5	(a) (i)		12 / (6 + 12) imum current = 0.67 A		C1 A1	[2]
	(ii)		ect start and finish points ect shape for curve with decreasing gradient		M1 A1	[2]
	` '	(b) maximum current = 2.0 A minimum current = 0			A1 A1	[2]
	(c) (i)		ooth curve starting at (0,0) with decreasing gradient section not horizontal		M1 A1	[2]
	(ii)		range of current / p.d. possible currents / p.d. down to zero brightness ranging from off to full brightness		B1	[1]

	Page 4			Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2011	9702	21	
6	(a)	mole no in elas time	e nurecule eculecternation tic control	of: mber of molecules / atoms / particles es in random motion nolecular forces ollisions ollisions much less than time between collisions of molecules much less than volume of containing vess	el	B1 + B1	[2]
	(b)	char mole pres	nge i ecule ssure	es collide with the walls n momentum of molecules implies force (on molecules es exert equal and opposite force on wall is averaging effect of many collisions be statements, 1 each))	В3	[3]
7	(a)	when waves overlap / meet, (resultant) displacement is the sum of the individisplacements		m of the individ	dual B1	[1]	
	(b)		conr <i>or</i> one	(ball-type) dippers nected to the same vibrating source /motor wave source described two slits		(M1) (A1) (M1) (A1)	[2]
				o with viewing screen on opposite side of tank ns of freezing picture e.g. strobe		B1 B1	[2]
	(c)	(i)	two	correct lines labelled X		B1	[1]
		(ii)	corre	ect line labelled N		B1	[1]