MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9702 PHYSICS

9702/42 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		ige 2	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011 9702			
See	ctior	ηA				
1	(a)	region (of space) where a particle / body experiences a force		B1	[1]
	(b)	similarit	y: e.g. force $\propto 1 / r^2$ potential $\propto 1 / r$		B1	[1]
		differen	ce: e.g. gravitation force (always) attractive electric force attractive or repulsive		B1 B1	[2]
	(c)	or	ratio is $Q_1Q_2 / 4\pi\epsilon_0 m_1m_2G$ = $(1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times (1.67 \times 10^{-27})^2 \times 6.6$ = 1.2×10^{36} $F_E = 2.30 \times 10^{-28} \times R^{-2}$ (C1) $F_G = 1.86 \times 10^{-64} \times R^{-2}$ (C1) $F_E / F_G = 1.2 \times 10^{36}$ (A1)	7 × 10 ⁻¹¹	C1 C1 A1	[3]
2	(a)		of substance ng same number of particles as in 0.012kg of carbon-12	:	M1 A1	[2]
	(b)	+ (2.3 × = 0.296 = 0.716	= $(2.3 \times 10^5 \times 3.1 \times 10^{-3}) / (8.31 \times 290)$ 10 ⁵ × 4.6 × 10 ⁻³) / (8.31 × 303) + 0.420		C1 C1 C1 A1	[4]
3	(a)	so no re	on plates are equal and opposite esultant charge stored because there is charge separation		M1 A1 B1	[3]
	(b)	(i) cap	pacitance = Q / V = $(18 \times 10^{-3}) / 10$		C1	101
			= 1800 μ F		A1	[2]
			e of area under graph <i>or</i> energy = ½ <i>CV</i> ² ergy = 2.5 × 15.7 × 10 ⁻³ <i>or</i> energy = ½ × 1800 × 10 ⁻⁶ × 1 = 39 mJ	(10 ² – 7.5 ²)	C1 A1	[2]
	(c)	p.d. acr charge :	ed capacitance of Y & Z = $20 \mu\text{F}$ or total capacitance = 6 oss capacitor X = 8V or p.d. across combination = 12V = $10 \times 10^{-6} \times 8$ or $6.67 \times 10^{-6} \times 12$		C1 C1	[0]
		:	= 80 µC		A1	[3]

Pa		je 3	Mark Scheme: Teachers' versio	n Syllabus	Paper	
	4 (a) +∆ <i>U</i> : inc + <i>q</i> : thern		GCE AS/A LEVEL – May/June 20	11 9702	42	
4			: increase in internal energy hermal energy / heat supplied to the system work done on the system		B1 B1 B1	[3]
	(b)	(i)	(thermal) energy required to change the state o per unit mass without any change of temperature	f a substance	M1 A1 A1	[3]
	((ii)	when evaporating greater change in separation of atoms/molecule greater change in volume identifies each difference correctly with ΔU and		M1 M1 A1	[3]
5	(a)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) / rate	of flux cutting	M1 A1	[2]
	((ii)	 moving magnet causes change of flux linkage speed of magnet varies so varying rate of cha magnet changes direction of motion (so curre 	ange of flux	B1 B1 B1	[1] [1] [1]
			od = 0.75s uency = 1.33Hz		C1 A1	[2]
	(c) (grap	h: smooth correctly shaped curve with peak at A never zero	бо	M1 A1	[2]
	(d)	(i)	resonance		B1	[1]
	((ii)	e.g. quartz crystal for timing / production of ultra	sound	A1	[1]
6	(a)	(i)	$2\pi f = 380$ frequency = 60 Hz		C1 A1	[2]
	((ii)	$I_{\text{RMS}} \times \sqrt{2} = I_0$ $I_{\text{RMS}} = 9.9 / \sqrt{2}$		C1	
			= 7.0 A		A1	[2]
	(b)	pow R =	$er = I^2 R$ 400 / 7.0 ²		C1	
		=	8.2Ω		A1	[2]

Pa		Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2011	9702	42	
7	(a)	 wavelength of wave associated with a particle that is moving 				M1 A1	[2]
	(b)	(i)		$\begin{array}{l} \text{rgy of electron} = 850 \times 1.6 \times 10^{-19} \\ = 1.36 \times 10^{-16} \text{ J} \\ \text{rgy} = p^2 / 2m \text{ or } p = mv \text{ and } E_{\text{K}} = \frac{1}{2}mv^2 \\ \text{nentum} = \sqrt{(1.36 \times 10^{-16} \times 2 \times 9.11 \times 10^{-31})} \end{array}$		M1 M1	
		(ii)	λ = I	$= 1.6 \times 10^{-23} \text{Ns}$		A0 C1	[2]
			wave	elength = $(6.63 \times 10^{-34}) / (1.6 \times 10^{-23})$ = 4.1 × 10 ⁻¹¹ m		A1	[2]
	(c)	elec incie fluo patt	ctron dent o resce ern o	or description showing: beam in a vacuum on <u>thin</u> metal target / carbon <u>film</u> ent screen f concentric rings observed imilar to diffraction pattern observed with visible light		B1 B1 B1 M1 A1	[5]
8	(a)		rgy re nfinity	equired to separate nucleons in a <u>nucleus</u>		M1 A1	[2]
	(b)	E = = = =	<i>mc</i> ² 1.66 1.49	$5 \times 10^{-27} \text{kg}$ × $10^{-27} \times (3.0 \times 10^8)^2$ × 10^{-10} J $9 \times 10^{-10}) / (1.6 \times 10^{-13})$ MeV		C1 M1 M1 A0	[3]
	(c)	(i)	:	= $2.0141u - (1.0073 + 1.0087)u$ = $-1.9 \times 10^{-3}u$ ing energy = $1.9 \times 10^{-3} \times 930$ = 1.8MeV		C1 A1	[2]
		(ii)		= (57 × 1.0087u) + (40 × 1.0073u) – 97.0980u = (–)0.69 u		C1	
				ing energy per nucleon = (0.69 × 930) / 97 = 6.61 MeV		C1 A1	[3]

	Page 5	Mark Scheme: Teachers' version S		Paper	
		GCE AS/A LEVEL – May/June 2011 9		42	
Sec	ction B				
9	•	e metal wire hown as a grid in plastic		B1 B1 B1	[3]
	(b) (i) gain	(of amplifier)		B1	[1]
	$V_1 =$	$V_{OUT} = 0$, then $V^+ = V^-$ or $V_1 = V_2$ (1000/1125) × 4.5 4.0 V		C1 C1 A1	[3]
	=	$(1000 / 1128) \times 4.5$ 3.99 V $f = 12 \times (3.99 - 4.00)$ = (-) 0.12 V		C1 A1	[2]
10	strong / large nuclei preces radio frequer at Larmor fre causes resor on relaxation pulse detecte non-uniform allows positio allows for loc (<i>six points, 1</i>	B1 B1 B1 B1 B1 B1	[8]		
11	beca e.g. canı banı e.g. cove rece	eliable communication ause ion layers vary in height / density not carry all information required dwidth too narrow erage limited eption poor in hilly areas sensible suggestions, M1 & A1 for each, max 4)	(M1) (A1) (M1) (A1) (M1) (A1)		[4]
	., .	ust be amplified (greatly) before transmission back gnal would be swamped by <u>downlink</u> signal	to Earth	B1 B1	[2]

Page	ge 6 Mark Scheme: Teachers' version Sy		Syllabus	Pap	er
		GCE AS/A LEVEL – May/June 2011	9702	42	
12 (a) (i	24 =	$D / dB = 10 \log(P_1 / P_2)$ = 10 lg(P_1 / {5.6 × 10 ⁻¹⁹ }) = 1.4 × 10 ⁻¹⁶ W		C1 C1 A1	[3]
(ii		enuation per unit length = 1 / <i>L</i> × 10 lg(<i>P</i> ₁ / <i>P</i> ₂) = 1 / <i>L</i> × 10 lg({3.5 × 10 ⁻³ }/{1.4 × 10 ⁻¹⁶ }) 1 km		C1 C1 A1	[3]
	<i>or</i> atte	enuation = 10 lg({3.5 × 10 ⁻³ }/{5.6 × 10 ⁻¹⁹ }) = 158 dB	(C1)		
		nuation along fibre = (158 – 24) (158 – 24) / 1.9 = 71 km	(C1) (A1)		
(b) le	ess atte	enuation (per unit length) / longer uninterrupted le	ength of fibre	B1	[1]