MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page		ge 2	Mark Scheme: Teachers' version	Syllabus 9702	Paper	
			GCE AS/A LEVEL – May/June 2012		22	
1	(a)	Ċ:	$= \frac{\pi P r^4}{8 C l}$ = $[\pi \times 2.5 \times 10^3 \times (0.75 \times 10^{-3})^4] / (8 \times 1.2 \times 10^{-6} \times 0.25)$ = $1.04 \times 10^{-3} \mathrm{N s m^{-2}}$		C1 A1	[2]
	(b)		%r $C = \%P + 4 \times \%r + \%V/t + \%l$ = 2% + 5.3% + 0.83% + 0.4% (= 8.6%) $C = \pm 0.089 \times 10^{-3} \text{ N s m}^{-2}$		C1 A1 A1	[5]
	(c)		$t = (1.04 \pm 0.09) \times 10^{-3} \mathrm{N s m^{-2}}$		A1	[3] [1]
2	(a)	(i)	$v^2 = u^2 + 2as$ = $(8.4)^2 + 2 \times 9.81 \times 5$ = 12.99 m s ⁻¹ (allow 13 to 2 s.f. but not 12.9)		C1 A1	[2]
		(ii)	$t = (v - u) / a \text{ or } s = ut + \frac{1}{2}at^{2}$ = (12.99 - 8.4) / 9.81 or 5 = 8.4t + $\frac{1}{2} \times 9.81t^{2}$ t = 0.468 s		M1 A0	[1]
	(b)	suit cor	sonable shape table scale rectly plotted 1 st and last points at (0,8.4) and (0.88 – 0.96,0) n non-vertical line at 0.47 s	cale plotted 1 st and last points at (0,8.4) and (0.88 – 0.96,0)		[3]
	(c)	(i)	1. kinetic energy at end is zero so $\Delta KE = \frac{1}{2} mv^2$ or $\Delta KE = \frac{1}{2}$ = $\frac{1}{2} \times 0.05 \times (8.4)^2$ = (-) 1.8 J	$mu^2 - \frac{1}{2} mv^2$	C1 A1	[2]
		(ii)	2. final maximum height = $(4.2)^2 / (2 \times 9.8) = (0.9 \text{ (m)})$ change in PE = $mgh_2 - mgh_1$ = $0.05 \times 9.8 \times (0.9 - 5)$ = $(-) 2.0 \text{ J}$ change is -3.8 (J) energy lost to ground (on impact) / energy of deformation of the thermal energy in ball	the ball /	C1 C1 A1 B1 B1	[3] [2]
3	(a)		ody continues at rest or constant velocity unless acted on by a ternal) force	a resultant	B1	[1]
	(b)	(i) (ii)	no resultant force (and no resultant torque) hence in equilibri		M1 A1	[2]
		(11)	$\frac{\text{component of weight}}{\text{tension}} = 450 \times 9.81 \times \sin 12^{\circ} (= 917.8)$ $\frac{1600}{1570} \times 9.81 \times \sin 12^{\circ} = (650 + 917.8)$ = 1600 (1570) N		C1 C1 A1	[3]

	Page 3	Mark Scheme: Teachers' version Syllabus	Pape	Paper 22	
		GCE AS/A LEVEL – May/June 2012 9702	22		
		ork done against frictional force or friction between log and slope utput power greater than the gain in PE / s	M1 A1	[2]	
4	curren	esistance = 20 (k Ω) t = 12 / 20 (mA) or potential divider formula [12 / 20] × 12 = 7.2 V	C1 C1 A1	[3]	
	total re	el resistance = 3 (kΩ) esistance 8 + 3 = 11 (kΩ) t = 12 / 11 × 10 ³ = 1.09 × 10 ⁻³ or 1.1 × 10 ⁻³ A	C1 C1 A1	[3]	
		DR resistance decreases tal resistance (of circuit) is less hence current increases	M1 A1	[2]	
	• • •	sistance across XY is less ss proportion of 12V across XY hence p.d. is less	M1 A1	[2]	
5	(a) <i>E</i> = str	ress / strain	B1	[1]	
	. , . ,	diameter / cross sectional area / radius original length	B1	[1]	
	m	easure original length with a <u>metre</u> ruler / tape easure the <u>diameter</u> with micrometer (screw gauge) <i>low digital vernier calipers</i>	B1 B1	[2]	
	(iii) er	hergy = $\frac{1}{2}$ Fe or area under graph or $\frac{1}{2}$ kx ² = $\frac{1}{2} \times 0.25 \times 10^{-3} \times 3 = 3.8 \times 10^{-4}$ J	C1 A1	[2]	
		nt line through origin below original line rough (0.25, 1.5)	M1 A1	[2]	
6	same	aves travelling (along the same line) in opposite directions overlap/me frequency / wavelength ant displacement is the sum of displacements of each wave /	eet M1 A1		
	produc	B1	[3]		
	adjust	atus: source of sound + detector + reflection system ment to apparatus to set up standing waves – how recognised urements made to obtain wavelength	B1 B1 B1	[3]	
	(c) (i) at	least two nodes and two antinodes	A1	[1]	
	• •	ode to node = $\lambda / 2 = 34$ cm (allow 33 to 35 cm)	C1		
		= $f\lambda$ = 340 / 0.68 = 500 (490 to 520) Hz	C1 A1	[3]	

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2012	9702	22	
7	(a)	W = 1 an Y = 2 Z = 55	nd X = 0		A1 A1 A1	[1] [1] [1]
	(b)	(b) explanation in terms of mass – energy conservation energy released as gamma or photons or kinetic energy of products or em radiation		ducts or	B1 B1	[2]