UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9702 PHYSICS

9702/34

Paper 3 (Advanced Practical Skills 2), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

(a)	(iii)	Value for I_0 in range 2.0 to 4.0 mA, with unit.	[1]	
(b)	(ii)	First value of I (greater than I_0).	[1]	
(c)		sets of readings of R and I scores 5 marks, five sets scores 4 marks etc. jor help from Supervisor -2 . Minor help from Supervisor -1 . Incorrect trend then -1 .	[5]	
		nge: ues of R must include $0.22\text{k}\Omega$ or $0.33\text{k}\Omega$ and $3.3\text{k}\Omega$ or $4.7\text{k}\Omega$.	[1]	
	Ead	lumn headings: ch column heading must contain a quantity and a unit. ere must be some distinguishing mark between the quantity and the unit.	[1]	
		nsistency: ues of $\it I$ must be given either all to the nearest 0.1 mA or all to the nearest 0.01 mA.	[1]	
	Significant figures: Every value of 1/R must be given to either 2 or 3 significant figures.			
		culated values: ? calculated correctly.	[1]	
Se Sc in Sc		Axes: Sensible scales must be used (no awkward scales such as 3:10). Scales must be chosen so that the plotted points must occupy at least half the graph in both <i>x</i> and <i>y</i> directions. Scales must be labelled with the quantity which is being plotted. Scale markings must be no more than 3 large squares apart.	[1] grid	
		Plotting of points: All observations in the table must be plotted. Diameter of plots must be < half a small square (no blobs). Plotting must be accurate half a small square.	[1] e to	

Mark Scheme: Teachers' version

GCE AS/A LEVEL - May/June 2012

Syllabus

9702

Paper

34

Page 2

Quality: [1]

Range of I must be at least 2 mA, and all points must be within 0.5 mA of a straight line. All points in the table must be plotted (at least 5) for this mark to be scored.

(ii) Line of best fit: [1]

Judge by balance of all points on the grid about the candidate's line (at least 5 points). There must be an even distribution of points either side of the line along the full length.

One anomalous point is allowed only if clearly indicated (i.e. circled or labelled) by the candidate.

Line must not be kinked or thicker than half a small square.

L	Page 3		Mark Scheme: Teachers' Version	Syllabus	Paper
			GCE AS/A LEVEL – May/June 2012	9702	34
	(d)	(d) (iii) Gradient: The hypotenuse must be at least half the length of the drawn line. Both read-offs must be accurate to half a small square in both x and y direction on the contract of the co			
		(y-intercept: Either: Correct read off from a point on the line is substituted into j Or: Check read-off of the intercept directly from the graph.	y = mx + c.	[1]
			ulation of <i>b</i> is correct, = (candidate's gradient value)/(candidate's intercept value	e).	[1]
	,	Valu	e for b in range $0.8 \mathrm{k}\Omega$ to $1.2 \mathrm{k}\Omega$, with unit.		[1]
					[Total: 20]
2			e of d in range 0.80 to 0.99 mm, to nearest 0.01 mm, with ι ence of repeated measurements for d .	ınit.	[1] [1]
			entage uncertainty in d based on absolute uncertainty of 0 ect calculation to get percentage uncertainty.	.01 mm.	[1]
	(d) (i	-	Value of θ in range 91° to 180° to nearest degree, with uni Evidence of repeated measurements for θ .	t.	[1] [1]
	(Correct calculation of $\sin(180^\circ - \theta)$. $\sin(180^\circ - \theta)$ given to 2 or 3 s.f.		[1] [1]
	()	Seco	and value of d . and value of θ . ity: θ larger for smaller d .		[1] [1] [1]
	(f)	(i) (Correct calculation of two values of <i>k</i> .		[1]
	(Valid conclusion based on the calculated values of k . eagainst a stated criterion.	Candidate must	test correctly [1]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 3

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9702	34

(g)

	(i) Limitations 4 max.	(ii) Improvements 4 max.	No credit/not enough
A	two results not enough	take more readings and <u>plot</u> <u>a graph</u> / calculate more <i>k</i> values and <u>compare</u>	'repeat readings' on its own/ few readings/ take more readings and (calculate) average k/ only one reading
В	θ (or angle, or scale reading, or protractor reading, or pointer reading) is difficult to measure, with reason linked to rapid motion or short time	video and view playback/ slow motion camera/ video to read angle/ add a 'max hold' pointer/ angle sensor with data logger (or computer)	just 'use a computer'/ 'reading' difficult to measure
С	parallax error <u>in θ</u> <u>measurement</u>	use mirror scale/ description of method to reduce error	view at right angles/ trial and improvement
D	θ (or reading) is difficult (or inaccurate, or imprecise) because pointer is thick	_	use thinner pointer/ use larger scale
E	pointer attachment moves	description of secure method of attachment	
F	_	description of method of fixing block to bench	

[Total: 20]