MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Pape	r
			GCE AS/A LEVEL – May/June 2012	9702	43	
See	ction	Α				
1	(a)	work do	ne in bringing unit mass from infinity (to the point)		B1	[1]
	(b)	gravitati <i>either</i>	onal <u>force</u> is (always) attractive as <i>r</i> decreases, object/mass/body does work		B1	
		or	work is done by masses as they come together		B1	[2]
	(c)	either or	force on mass = mg (where g is the acceleration of fr /gravitational field stree $g = GM/r^2$ if $r \otimes h, g$ is constant ΔE_P = force × distance moved = mgh $\Delta E_P = m\Delta\phi$ = $GMm(1/r_1 - 1/r_2) = GMm(r_2 - r_1)/r_1r_2$ if $r_2 \approx r_1$, then $(r_2 - r_1) = h$ and $r_1r_2 = r^2$ $g = GM/r^2$ $\Delta E_P = mgh$		B1 B1 M1 A0 (C1) (B1) (B1) (A0)	[4]
	(d)			ores 2 marks)	C1 C1 A1	[3]
2	(a)	• • •	 er random motion constant velocity until hits wall/other molecule al) volume of molecules is negligible apared to volume of containing vessel 		B1 M1 A1	[1]
		radi	us/diameter of a molecule is negligible pared to the average intermolecular distance		(M1) (A1)	[2]
	(b)	<i>or</i> random < <i>c</i> ² > =	molecule has component of velocity in three directions $c^2 = c_x^2 + c_y^2 + c_z^2$ motion and averaging, so $\langle c_x^2 \rangle = \langle c_y^2 \rangle = \langle c_z^2 \rangle$ $3 \langle c_x^2 \rangle = \sqrt[1]{3}Nm \langle c^2 \rangle$		M1 M1 A1 A0	[3]
	(c)	tempera $c_{\rm rms} = \xi$	<i>T</i> or $c_{rms} \propto \sqrt{T}$ tures are 300 K and 373 K $580 \mathrm{m s^{-1}}$ allow any marks for use of temperature in units of °C in	stead of K)	C1 C1 A1	[3]

	Page 3				Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2012 9702		9702	43	
3	(a)	the swith	(numerically equal to) quantity of (thermal) energy required to change the state of unit mass of a substance without any change of temperature (Allow 1 mark for definition of specific latent heat of fusion/vaporisation)				[2]
	(b)	eithe	either energy supplied = 2400 × 2 × 60 = 288000 J energy required for evaporation = 106 × 2260 = 240000 J difference = 48000 J				
		rate of loss = $48000 / 120 = 400 W$ or energy required for evaporation = $106 \times 2260 = 240000 J$ power required for evaporation = $240000 / (2 \times 60) = 2000 W$ rate of loss = $2400 - 2000 = 400 W$				A1 (C1) (C1) (A1)	[3]
4	(a)	$a = (-)\omega^2 x$ and $\omega = 2\pi/T$ T = 0.60 s $a = (4\pi^2 \times 2.0 \times 10^{-2}) / (0.6)^2$			C1 C1		
	(b)	= $2.2 \mathrm{m s^{-2}}$ sinusoidal wave with all values positive				A1 B1	[3]
	()	all values positive, all peaks at $E_{\rm K}$ and energy = 0 at t = 0 period = 0.30 s		B1 B1	[3]		
5	(a)	force per unit positive charge acting on a stationary charge			B1	[1]	
	(b)	.,	Q =	Q / $4\pi\epsilon_0 r^2$ 1.8 × 10 ⁴ × 10 ² × 4π × 8.85 × 10 ⁻¹² × (25 × 10 ⁻²) ² 1.25 × 10 ⁻⁵ C = 12.5 µC		C1 M1 A0	[2]
			=	Q / $4\pi\epsilon_0 r$ (1.25 × 10 ⁻⁵) / (4π × 8.85 × 10 ⁻¹² × 25 × 10 ⁻²) 4.5 × 10 ⁵ V not allow use of V = Er unless explained)		C1 A1	[2]

	Page 4		Syllabus	Paper			
		GCE AS/A LEVEL – May/June 2012	9702	43			
6	(a) (i)	peak voltage = 4.0 V	A1	[1]			
	(ii)	(ii) r.m.s. voltage (= 4.0/√2) = 2.8 V					
	(iii)	period $T = 20 \text{ ms}$ frequency = 1 / (20 × 10 ⁻³) frequency = 50 Hz	M1 M1 A0	[2]			
	(b) (i)	change = 4.0 - 2.4 = 1.6 V	A1	[1]			
	(ii)	$\Delta Q = C \Delta V$ or $Q = CV$ = 5.0 × 10 ⁻⁶ × 1.6 = 8.0 × 10 ⁻⁶ C	C1 A1	[2]			
	(iii)	discharge time = 7 ms current = $(8.0 \times 10^{-6}) / (7.0 \times 10^{-3})$ = $1.1(4) \times 10^{-3} A$	C1 M1 A0	[2]			
		erage p.d. = 3.2V	C1				
	res	istance = 3.2 / (1.1 × 10 ⁻³) = 2900 Ω <i>(allow 2800</i> Ω <i>)</i>	A1	[2]			
7	(a) ske	tch: concentric circles <i>(minimum of 3 circles)</i> separation increasing with distance from wire correct direction	M1 A1 B1	[3]			
	(b) (i)	arrow direction from wire B towards wire A	B1	[1]			
	(ii)	<i>either</i> reference to Newton's third law <i>or</i> force on each wire proportional to product of the two so forces are equal	currents M1 A1	[2]			
	var var	the <u>always</u> towards wire A/ <u>always</u> in same direction ties from zero (to a maximum value) (1) tation is sinusoidal / sin ² (1)	B1				
	• • •	twice frequency of current(1)y two, one each)	B2	[3]			
8	ofe	ket/quantum/discrete amount of energy electromagnetic radiation ow 1 mark for 'packet of electromagnetic radiation')	M1 A1				
	ene	B1	[3]				
	• •	 (b) each (coloured) line corresponds to one wavelength/frequency energy = Planck constant × frequency 					
	imp so	B1 A0	[2]				

	Page 5		Mark Scheme: Teachers' version	Syllabus	Pape	r
			GCE AS/A LEVEL – May/June 2012	9702	43	
9	(a) (i)	eithe or	er probability of decay (of a nucleus) per unit time λ = (-)(dN/dt) / N (-)dN/dt and N explained		M1 A1 (M1) (A1)	[2]
	(ii)	½ = In (1∕	ne $t_{\frac{1}{2}}$, number of nuclei changes from N_0 to $\frac{1}{2}N_0$ exp $(-\lambda t_{\frac{1}{2}})$ or $2 = \exp(\lambda t_{\frac{1}{2}})$ $t_2) = -\lambda t_{\frac{1}{2}}$ and ln $(\frac{1}{2}) = -0.693$ or ln $2 = \lambda t_{\frac{1}{2}}$ and $3 = \lambda t_{\frac{1}{2}}$	ln 2 = 0.693	B1 B1 B1 A0	[3]
	λ =	= 0.10	8exp(–8λ) 7 (hours ^{–1}) nours <i>(do not allow 3 or more SF)</i>		C1 C1 A1	[3]
	ba da	ckgrou ughtei	lom nature of decay und radiation r product is radioactive sensible suggestions, 1 each)		B2	[2]

	Page 6			Mark Scheme: Teachers' version	Syllabus	F	Paper
		GCE AS/A LEVEL – May/June 2012 9702				43	
Sec	ctior	в					
10	(a)	light	t-dep	endent resistor (allow LDR)		B1	[1]
	(b)	(i)		resistors in series between +5V line and earth point connected to inverting input of op-amp		M1 A1	[2
		(ii)	•	/ coil between diode and earth ch between lamp and earth		M1 A1	[2
	(c)	(i)		ch on/off mains supply using a low voltage/current outp w 'isolates circuit from mains supply')	put	B1	[1
		(ii)		y will switch on for one polarity of output (voltage) ches on when output (voltage) is negative		C1 A1	[2]
11 (a)		(i)		radiation produced whenever charged particle is acce trons hitting target have distribution of accelerations	lerated	M1 A1	[2]
		(ii)	eithe or or all el	er wavelength shorter/shortest for greater/greatest at $\lambda_{\min} = hc/E_{\max}$ minimum wavelength for maximum energy lectron energy given up in one collision/converted to si		B1 B1	[2
	(b)	(i)		ness measures the penetration of the beam ter hardness, greater penetration		C1 A1	[2]
		(ii)		rolled by changing the anode voltage er anode voltage, greater penetration/hardness		C1 A1	[2
	(c)	(i)		-wavelength radiation more likely to be absorbed in the y to penetrate through body	e body/less	B1	[1]
		(ii)	(alur	ninium) filter/metal foil placed in the X-ray beam		B1	[1
12	(a)	stro <i>eith</i>		niform (magnetic) field aligns nuclei		M1	
		or	-unifo	gives rise to Larmor/resonant frequency <u>in r.f. region</u> form (magnetic) field enables nuclei to be located		A1 M1	
		or		changes the Larmor/resonant frequency		A1	[4]
	(b)	(i)	diffe	rence in flux density = $2.0 \times 10^{-2} \times 3.0 \times 10^{-3} = 6.0 \times 10^{-3}$	0 ⁻⁵ T	A1	[1]
		(ii)		$= 2 \times c \times \Delta B$ = 2 \times 1.24 \times 10 ⁸ \times 6.0 \times 10 ⁻⁵		C1	
		= $2 \times 1.34 \times 10^8 \times 6.0 \times 10^{-5}$ = 1.6×10^4 Hz			A1	[2]	

	Page 7		,	Mark Scheme: Teachers' version	Syllabus		Paper
				GCE AS/A LEVEL – May/June 2012	9702		43
13	(a)	 (i) no interference (between signals) <u>near boundaries</u> (of cells) (ii) for large area, signal strength would have to be greater and this could 		B1	[1]		
		()		azardous to health		B1	[1]
	(b)	con with	npute n stro	hone is sending out an (identifying) signal r/cellular exchange <u>continuously</u> selects cell/base stati ngest signal r/cellular exchange allocates (carrier) frequency (and s		M1 A1 A1	[3]