MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9702 PHYSICS

9702/51

Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE AS/A LEVEL – May/June 2012	9702	51
1	Planning (15	i marks)		
Def	ining the pro	blem (3 marks)		
P1	Frequency or	period of rotation or ω is the independent variable and	d $ heta$ is the depend	dent variable
	or vary f or T	or ω and measure θ .		[1]
P2	$\omega = 2\pi f = 2\pi/$	Т		[1]
P3	Keep the leng	gth of the rigid rod <u>constant;</u> ignore reference to mass.		[1]
Met	thods of data	collection (5 marks)		
		gram of apparatus: small <u>object</u> , pole attached to a <u>rota</u>	ting device	
	(motor, turnta	able).		[1]
M2	Method to ch	ange the speed of the rotating device.		[1]
M3		termine frequency or time period (e.g. stop watch to tin achometer, light gates connected to a timer/frequency		
		achometer, light gates connected to a time/riequency	meter).	[1]
M4	Use fiducial r	nark or light gates perpendicular to motion of object.		[1]
M5	Method to me	easure angle – use protractor or rule for measurement	s for trigonometi	y methods.
	This must be	shown correctly on diagram or explained in text.		[1]
Met	thod of analy	sis (2 marks)		
	-	of $\cos \theta$ against $1/\omega^2$.		[1]
Α2	Relationshin	is valid if straight line through the origin		[1]
/ \2	Relationship			[']
		ations (1 mark)		
S1	Use a protect	tive screen in case mass detaches from the pole. Do n	ot use goggles.	[1]
Ade	ditional detail	(4 marks)		
Rel	evant points n	•		[4]
1		speed to produce measurable θ .		
2 3		tail on measuring angle e.g. <u>large</u> protractor fixed to po ethod, slow motion freeze frame video, camera with de		
3 4	$\cos \theta = h/l$ or			
5		ecking pole is vertical – use a set square.		
6		tail on measuring angular velocity, e.g. time at least 10) rotations.	
7		on to become stable.		
Do	not allow vagu	le computer methods.		

[Total: 15]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9702	51

2 Analysis, conclusions and evaluation (15 marks)

Part	Mark	Expected Answer	Additional Guidance		
(a)	A1	Gradient = <i>r</i> <i>y</i> -intercept = lg <i>s</i>	Allow log or In		
(b)	T1 T2	1.70 or 1.6990.41 or 0.4151.78 or 1.7780.53 or 0.5311.85 or 1.8450.64 or 0.6431.90 or 1.9030.73 or 0.7321.95 or 1.9540.82 or 0.8201.98 or 1.9780.86 or 0.857	Ignore significant figures. A mixture is allowed.		
	U1	From \pm 0.03 or \pm 0.04, to \pm 0.01 (\pm 0.012)	Allow more than one significant figure.		
(c) (i)	G1	Six points plotted correctly	Must be within half a small square. Penalise 'blobs' (more than half a small square). Ecf allowed from table.		
	U2	Error bars in lg (<i>y</i> / mm) plotted correctly.	Must be accurate within half a small square.		
(ii)	G2	Line of best fit	If points are plotted correctly then lower end of line should pass between (1.655, 0.35) and (1.665, 0.35) and upper end of line should pass between (2.00, 0.89) and (2.00, 0.90). Allow ecf from points plotted incorrectly – examiner judgement.		
	G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through <u>all</u> the error bars.	Line should be clearly labelled or dashed. Should pass from top of top error bar to bottom of bottom error bar or bottom of top error bar to top of bottom error bar. Mark scored only if error bars are plotted.		
(iii)	C1	C1 Gradient of best fit line The triangle used should be at least length of the drawn line. Check the Work to half a small square. Do not POT. (Should be about 1.6)			
	U3	Uncertainty in gradient	Method of determining absolute uncertainty. Difference in worst gradient and gradient.		
(iv)	C2	Negative <i>y</i> -intercept	Must be negative. FOX does not score. Expect to see point substituted into $y = mx + c$ Allow ecf from (c)(iii)		
	U4	Uncertainty in <i>y</i> -intercept	Uses worst gradient and point on WAL. Do not check calculation. FOX does not score.		

Page 4		Mark Scheme: Teachers' version		Syllabus	Paper
		GCE AS/A LEVEL – May/June 2012		9702	51
(d)	C3	<i>r</i> = gradient <u>and</u> is given to 2 or 3 s.f. <u>and</u> in the range 1.57 to 1.64	Allow 1.6 to 2 s.f. Penalise 1 s.f. or >3 s.f.		
	C4	$s = 10^{y-intercept}$	<i>y</i> -intercept must be used. (Should be about 0.005 or 5 × 10 ^{−3}) Allow ecf for method from (c)(iv) .		
	U5	Absolute uncertainty in <i>r</i> and <i>s</i>	Uncertainty in <i>r</i> sho uncertainty in the g Difference in worst	radient.	as the

Uncertainties in Question 2

(c) (iii) Gradient [U3]

Uncertainty = gradient of line of best fit – gradient of worst acceptable line Uncertainty = $\frac{1}{2}$ (steepest worst line gradient – shallowest worst line gradient)

[Total: 15]

(iv) [U4]

Uncertainty = y-intercept of line of best fit – y-intercept of worst acceptable line Uncertainty = $\frac{1}{2}$ (steepest worst line gradient – shallowest worst line gradient)

(d) [U5]

Uncertainty = best *s* –worst *s*