CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme		Syllabus	Paper	,
			GCE AS/A LEVEL – May/s	June 2013	9702	21	
1	(a)		returns to its original length (new load is removed	ot 'shape')		M1 A1	[2]
	(b)	energy /	N m / kg m ² s ⁻² and volume m ³ volume: kg m ² s ⁻² / m ³ volume: kg m ⁻¹ s ⁻²			C1 M1 A0	[2]
	(c)	ε has no	$s^{-2} m^{-2}$	ow C has	B1 M1		
		units of RHS: $kg m^{-1} s^{-2} = LHS$ units / satisfactory conclusion to show C has no units				A1	[3]
2	(a)	mass is the property of a body resisting changes in motion / quantity of matter in a body / measure of inertia to changes in motion					
		•	s the force due to the gravitational fie ational force	eld/force due to gravity	/	B1	[2]
		Allow 1/2	2 for 'mass is scalar weight is vector	,			
	(b)		w vertically down through O ion forces in correct direction on rop	e		B1 B1	[2]
		θ	veight = mg = 4.9 × 9.81 (= 48.07) 19 sin θ = mg θ = 44.(1)° so use of cos or tan 1/3 only	ale drawing allow ± 2	0	C1 C1 A1	[3]
		2 . 7	$= 69 \cos \theta$ = 49.6 / 50 N sc	ale drawing 50 ±2 (2/	(2) 50 ±4 (1/2	C1 2) A1	[2]
		full r	ect answers obtained using scale dia marks in 1 . then sin in 2 . (2/2)	agram or triangle of fo	orces will score	•	
3	(a)	gain in k special increase	otential energy due to decrease in he inetic energy due to increase in spec I case 'as PE decreases KE increase in thermal energy due to work done E.E. equals gain in K.E. and thermal e	ed (as K.E. = ½ <i>mv</i> ²) es' <i>(1/2)</i> against air resistance	e	(B1) (B1) (B1) (B1) max. 3	[3]

	Page 3		3	Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2013 9702		21	
	(b)	(i)	kine	etic energy = $\frac{1}{2} mv^2$ = $\frac{1}{2} \times 0.150 \times (25)^2$ = $46.875 = 47 \text{ J}$		C1 C1 A1	[3]
		(ii)	1.	potential energy (= mgh) = 0.150 × 9.81 × 21 loss = KE – mgh = 46.875 – (30.9) = 15.97 = 16 J		C1 C1 A1	[3]
			2.	work done = 16 J work done = force × distance F = 16 / 21 = 0.76 N		C1 A1	[2]
4	(a)	pre	ssure	e = force / area (normal to force)		A1	[1]
	(b)	mo (for	lecul ce ex	es/atoms/particles in (constant) random/haphazard motices have a change in momentum when they collide with the exerted on molecules) therefore force on the walls be to average force from many molecules/many collisions	<u>ne walls</u>	B1 M1 A1 A1	[4]
	(c)			collision when <u>kinetic</u> energy conserved ature constant for gas		B1 B1	[2]
5	(a)	coh pat	eren h diff	overlap / meet / superpose loce / constant λ or frequer ference = 0, λ , 2λ or phase difference = 0, 2π , 4π rection of polarisation/unpolarised	acy)	(B1) (B1) (B1) (B1) max. 3	[3]
	(b)	$f = \lambda = 0$		10 ⁹ Hz 10 ⁸ / 12 × 10 ⁹ (<i>any subject</i>)		C1 C1 M1 A0	[3]
	(c)	<u>sev</u> 5 m	<u>eral</u> naxim	m at P minima or maxima between O and P na / 6 minima between O and P xima / 6 minima including O and P		B1 B1 B1	[3]
	(d)	slits slits (1	s mad s put not ju	de narrower closer together wast 'make slits smaller') ting the slits M1 and explanation of axes of rotation A1		B1 B1	[2]

	Page 4	Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2013	9702	21	
6	(a) (i) che	mical to electrical		B1	[1]
	(ii) elec	ctrical to thermal / heat or heat and light		B1	[1]
	(b) (i) (P _B	=) EI or $I^2(R_1 + R_2)$		A1	[1]
	(ii) (<i>P</i> _R	$=) I^2 R_1$		A1	[1]
	(c) $R = \rho l / l$	A or clear from the following equation		B1	
	ratio = I	$^{2}R_{1}/I^{2}R_{2} = \frac{\rho l/\pi d^{2}}{\rho(2l)/\pi(2d)^{2}}$ or R_{1} has $8 \times$ resistance of R_{2}		C1	
		= 8 or 8:1		A1	[3]
	(d) $P = V^2 / (V \text{ or } E)$	R or E^2 / R the same) hence ratio is 1/8 or 1:8 = 0.125 (allow ecf from	om (c))	C1 A1	[2]
7	` '	ority/most went straight through deviated by small angles		В1	
	•	mall proportion/a few were deviated by large angles agles described as < 10° and large angles described as	>90°	B1 B1	[3]
	mass <u>ar</u>	the atom is empty space/nucleus very small compared vode charge concentrated in (very small) nucleus inks made with statements in (a)	vith atom	B1 B1 B1	[3]