CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9702	41

Section A

1 **B1** (a) region of space area / volume **B1** where a mass experiences a force [2] (b) (i) force proportional to product of two masses M1 force inversely proportional to the square of their separation M1 either reference to point masses or separation >> 'size' of masses Α1 [3] (ii) field strength = GM/x^2 or field strength $\propto 1/x^2$ C1 ratio = $(7.78 \times 10^8)^2 / (1.5 \times 10^8)^2$ C1 **A1** [3] (c) (i) either centripetal force = $mR\omega^2$ and $\omega = 2\pi / T$ centripetal force = mv^2 / R and $v = 2\pi R / T$ **B1** gravitational force provides the centripetal force **B1** either GMm / $R^2 = mR\omega^2$ or GMm / $R^2 = mv^2$ / R M1 $M = 4\pi^2 R^3 / GT^2$ Α0 [3] (allow working to be given in terms of acceleration) (ii) $M = \{4\pi^2 \times (1.5 \times 10^{11})^3\} / \{6.67 \times 10^{-11} \times (3.16 \times 10^7)^2\}$ C₁ $= 2.0 \times 10^{30} \text{kg}$ **A1** [2] 2 (a) obeys the equation $pV = \text{constant} \times T \text{ or } pV = nRT$ M1 p, V and T explained Α1 at all values of p, V and T/fixed mass/n is constant Α1 [3] **(b) (i)** $3.4 \times 10^5 \times 2.5 \times 10^3 \times 10^{-6} = n \times 8.31 \times 300$ M1 $n = 0.34 \, \text{mol}$ Α0 [1] (ii) for total mass/amount of gas $3.9 \times 10^5 \times (2.5 + 1.6) \times 10^3 \times 10^{-6} = (0.34 + 0.20) \times 8.31 \times T$ C1 $T = 360 \, \text{K}$ **A1** [2] (c) when tap opened gas passed (from cylinder B) to cylinder A **B1** M1 work done on gas in cylinder A (and no heating) so internal energy and hence temperature increase Α1 [3]

	Page 3		Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2013	9702	41	
3	(a)	(i) 1.	amplitude = 1.7 cm		A1	[1]
		2.	period = 0.36 cm frequency = 1/0.36 = 2.8 Hz		C1 A1	[2]
			$(-)\omega^2 x$ and $\omega = 2\pi/T$ seleration = $(2\pi/0.36)^2 \times 1.7 \times 10^{-2}$ = $5.2 \mathrm{m s}^{-2}$		C1 M1 A0	[2]
	(b)		straight line, through origin, with negative gradient from $(-1.7 \times 10^{-2}, 5.2)$ to $(1.7 \times 10^{-2}, -5.2)$ not reasonable, do not allow second mark)		M1 A1	[2]
	(c)	or $\frac{1}{2}m\omega^{2}(x)$ $x_{0}^{2} = 2x$	kinetic energy = $\frac{1}{2}m\omega^2(x_0^2 - x^2)$ potential energy = $\frac{1}{2}m\omega^2x^2$ and potential energy = kinetial energy = $\frac{1}{2}m\omega^2x^2 = \frac{1}{2}\times\frac{1}{2}m\omega^2x_0^2$ $\sqrt{2} = 1.7 / \sqrt{2}$	ic energy	B1 C1	
		= 1.20			A1	[3]
4	(a)	work done moving unit positive charge from infinity (to the point)			M1 A1	[2]
	(b)) kinetic energy = change in potential energy qV leading to $v = (2Vq/m)^{\frac{1}{2}}$		B1 B1	[2]
	(c)	either	$(2.5 \times 10^5)^2 = 2 \times V \times 9.58 \times 10^7$ V = 330 V this is less than 470 V and so 'no'		C1 M1 A1	[3]
		or	$v = (2 \times 470 \times 9.58 \times 10^7)$ $v = 3.0 \times 10^5 \mathrm{m s^{-1}}$ this is greater than $2.5 \times 10^5 \mathrm{m s^{-1}}$ and so 'no'		(C1) (M1) (A1)	
		or	$(2.5 \times 10^5)^2 = 2 \times 470 \times (q/m)$ $(q/m) = 6.6 \times 10^7 \text{C kg}^{-1}$ this is less than $9.58 \times 10^7 \text{C kg}^{-1}$ and so 'no'		(C1) (M1) (A1)	

	Page 4			Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2013	9702	41	
5	(a)	(unit	form ates)	magnetic) flux normal to long (straight) wire carrying a c force per unit length of 1 N m ⁻¹	urrent of 1 A	M1 A1	[2]
	(b)	(i)	flux	density = $4\pi \times 10^{-7} \times 1.5 \times 10^{3} \times 3.5$ = $6.6 \times 10^{-3} \text{ T}$		C1 A1	[2]
		(ii)	flux l	inkage = $6.6 \times 10^{-3} \times 28 \times 10^{-4} \times 160$ = 3.0×10^{-3} Wb		C1 A1	[2]
	(c)	(i)	•	uced) e.m.f. proportional to rate of age of (magnetic) flux (linkage)		M1 A1	[2]
		(ii)	e.m.	f. = $(2 \times 3.0 \times 10^{-3}) / 0.80$ = $7.4 \times 10^{-3} \text{ V}$		C1 A1	[2]
6	(a)	(i)		duce power loss in the core to eddy currents/induced currents		B1 B1	[2]
		(ii)	eithe or	no power loss in transformer input power = output power		B1	[1]
	(b)	eithe		r.m.s. voltage across load = $9.0 \times (8100 / 300)$ peak voltage across load = $\sqrt{2} \times 243$		C1	
				= 340 V		A1	[2]
		or		peak voltage across primary coil = $9.0 \times \sqrt{2}$ peak voltage across load = $12.7 \times (8100/300)$ = 340 V		(C1) (A1)	
7	(a)			st frequency of e.m. radiation g rise to emission of electrons (from the surface)		M1 A1	[2]
		(ii)	E = 1	hf		C1	
		threshold		shold frequency = $(9.0 \times 10^{-19}) / (6.63 \times 10^{-34})$ = 1.4×10^{15} Hz		A1	[2]
	(b)	or or		300 nm $\equiv 10 \times 10^{15}$ Hz (and 600 nm $\equiv 5.0 \times 10^{14}$ Hz) 300 nm $\equiv 6.6 \times 10^{-19}$ J (and 600 nm $\equiv 3.3 \times 10^{-19}$ J) zinc $\lambda_0 = 340$ nm, platinum $\lambda_0 = 220$ nm (and sodium λ_0 from sodium and zinc	= 520 nm)	M1 A1	[2]
	(c)	fewe	er ph	oton has larger energy otons per unit time octrons emitted per unit time		M1 M1 A1	[3]

	Page 5			Mark Scheme	Syllabus	Paper	•
				GCE AS/A LEVEL – May/June 2013	9702	41	
8	(a)			nuclei combine more massive nucleus		M1 A1	[2]
	(b)	(i)	∆m energ	= $(2.01410 \text{ u} + 1.00728 \text{ u}) - 3.01605 \text{ u}$ = $5.33 \times 10^{-3} \text{ u}$ gy = $c^2 \times \Delta m$ = $5.33 \times 10^{-3} \times 1.66 \times 10^{-27} \times (3.00 \times 10^8)^2$ = $8.0 \times 10^{-13} \text{ J}$		C1 C1 A1	[3]
		(ii)		d/kinetic energy of proton and deuterium must be very lated the nuclei can overcome electrostatic repulsion	arge	B1 B1	[2]
				Section B			
9	(a)	(i)	light-d	dependent resistor/LDR		B1	[1]
		(ii)	strain	ı gauge		B1	[1]
		(iii)	quart	z/piezo-electric crystal		B1	[1]
	(b)	(i)	resist	cance of thermistor decreases as temperature increses $V_{OUT} = V \times R / (R + R_T)$		M1	
			or	current increases and $V_{\text{OUT}} = IR$ increases		A1 A1	[3]
		(ii)	eithei or so ch	change in $R_{\rm T}$ with temperature is non-linear $V_{\rm OUT}$ is not proportional to $R_{\rm T}/$ change in $V_{\rm OUT}$ with $F_{\rm T}$ ange is non-linear	R _⊤ is non-linear	M1 A1	[2]
10	(a)	a) sharpness: how well the edges (of structures) are defined contrast: difference in (degree of) blackening between structures			B1 B1	[2]	
	(b) e.g. scattering of photos in tissue/no use of a collimator/no use of lead grid large penumbra on shadow/large area anode/wide beam large pixel size						
				two sensible suggestions, 1 each)		B2	[2]
	(c)	(i)	$I = I_0$ ratio	$e^{-\mu x}$ = exp(-2.85 × 3.5) / exp(-0.95 × 8.0) = (4.65×10^{-5}) / (5.00×10^{-4})		C1 C1	
				= 0.093		A1	[3]
		(ii)	or	r large difference (in intensities) ratio much less than 1.0 ood contrast		M1 A1	[2]
	(answer given in (c)(ii) must be consistent with ratio given in (c)(i))						

	i age o		Mark Ocheme Oynabus		i apci		
			GCE AS/A	LEVEL – May/June 2013	9702	41	
11	(a) (i)		litude of the carrier you	wave varies displacement of the information sign	al	M1 A1	[2]
	(ii)		enables shorter aer	s power required/less attenuation	n/less interferen	ce B2	[2]
	(b) (i)		uency = 909 kHz elength = (3.0 × 10 = 330 m	⁸) / (909 × 10 ³)		C1 A1	[2]
	(ii)	band	dwidth = 18kHz			A1	[1]
	(iii)	frequ	uency = 9000 Hz			A1	[1]
12			/ed signal, 28 = 10 l ∈ 10 ⁻⁴ W	$g(P / \{0.36 \times 10^{-6}\})$		C1 A1	[2]
	(b) loss	s in fik	ore = 10 lg({9.8 × 10 = 16 dB	0^{-3} } / {2.27 × 10^{-4} })		C1 A1	[2]
	(c) atte	enuati	on per unit length	= 16 / 85 = 0.19 dB km ⁻¹		A1	[1]

Syllabus

Paper