CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2			Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2014	9702	22	
1	(a)	power = energy/time or work done/time force: $kg m s^{-2}$ (including from mg in mgh or Fv)			B1		
		or k	inetio	c energy $(\frac{1}{2}mv^2)$: kg $(m s^{-1})^2$		B1	
		(dis	tance	e: m and (time) $^{-1}$: s $^{-1}$) and hence power: kg m s $^{-2}$ m s $^{-1}$	$= kg m^2 s^{-3}$	B1	[3]
	(b)	<i>A</i> : r	n² an	$m^2 s^{-3}$ od x : m and T : K substitution into $C = (Qx) / tAT$ or equivalent, or with care	ocollation	C1 C1 C1	
		unit	s of (C: $kgms^{-3}K^{-1}$	icenation	A1	[4]
2	\ ' / / ·			t' $(t'/4) \times t = 7.67 \times 10^{-7} \mathrm{m}^3$		C1	
		ρ=	(9.6	$\times 10^{-3}$)/[π (22.1/2 $\times 10^{-3}$) ² $\times 2.00 \times 10^{-3}$]		C1	[0]
		ρ=	1251	3 kg m ⁻³ (allow 2 or more s.f.)		A1	[3]
	(b)	(i)	$\Delta \rho I_{\rho}$	$\rho = \Delta m/m + \Delta t/t + 2\Delta d/d$		C1	
				= 5.21% + 0.50% + 0.905% [or correct fractional un	ncertainties]	C1	
				= 6.6% (6.61%)		A1	[3]
		(ii)	ρ=	$12500\pm800\mathrm{kg}\mathrm{m}^{-3}$		A1	[1]
3	(a)		-	mass/object continues (at rest or) at constant/unifo by a <u>resultant</u> force	rm velocity unle	ss B1	[1]
	(b)	(i)		ght <u>vertically</u> down nal/reaction/contact (force) perpendicular/normal <u>to t</u>	he slope	B1 B1	[2]
		(ii)	1.	acceleration = gradient or $(v - u)/t$ or $\Delta v/t$ = $(6.0 - 0.8)/(2.0 - 0.0) = 2.6 \text{ m s}^{-2}$		C1 M1	[2]
			2.	F = ma = 65 × 2.6 = 169 N (allow to 2 or 3 s.f.)		A1	[1]
				weight component seen: $mg \sin \theta$ (218 N) 218 – R = 169 R = 49 N (require 2 s.f.)		C1 C1 A1	[3]

	Page 3			Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2014	9702	22	
4	(a)			nergy of a <u>mass</u> due to its position in a <u>gravitational fieldergy</u> (a mass has) due to its motion/speed/velocity	<u>1</u>	B1 B1	[2]
	(b)	(i)	1.	$KE = \frac{1}{2} mv^2$		C1	
				$=\frac{1}{2}\times0.4\times(30)^2$		C1	
				= 180 J		A1	[3]
			2.	$s = 0 + \frac{1}{2} \times 9.81 \times (2.16)^2$ or $s = (30 \sin 45^\circ)^2/(2$	× 9.81)	C1	
				= 22.88 (22.9) m = 22.94 (22.9) m		A1	[2]
			3.	GPE = mgh = $0.4 \times 9.81 \times 22.88 = 89.8 (90) J$		C1 A1	[2]
		(ii)	1.	KE = initial KE – GPE = 180 – 90 = 90 J		A1	[1]
			2.	(horizontal) velocity is not zero/(object) is still moving in terms of conservation of energy	/answer explained	I B1	[1]
5	(a)	(Yo	ung	modulus/E =) stress/strain		B1	[1]
	(b)	(i) stress = F/A					
			or or	$= F/(\pi d^2/4)$ = F/ (\pi d^2)		M1	
			OI.	- / / (nu)		IVI I	
			rati	o = 4 (or 4:1)		A1	[2]
		(ii)		s the same for both wires (as same material) [e.g. $E_P = R$ ain = stress/ E	Ξ _Q]	M1	
				o = 4 (or 4:1) [must be same as (i)]		A1	[2]
6	(a)			re no lost volts/energy lost in the battery are no lost volts/energy lost in the internal resistance		B1	[1]
	(b)	the current/ I decreases (as R increases) p.d. decreases (as R increases)					
		or					
		the parallel resistance (of X and R) increases p.d. across parallel resistors increases, so p.d. (across Y) decreases				M1 A1	[2]

	Page 4			Mark Scheme	Syllabus	Paper	
	-			GCE AS/A LEVEL – May/June 2014	9702	22	
				ent = 2.4 (A) across AB = 24 – 2.4 × 6 = 9.6 V		C1 M1	
			or				
				resistance = 10Ω (= $24V/2.4A$) allel resistance = 4Ω), p.d. = $24 \times (4/10) = 9.6 V$		C1 M1	[2]
		•	•	B) = $9.6/2.4 = 4.0 \Omega$ + $1/X = 1/4$ [must correctly substitute for R] 12Ω		C1 C1 A1	
			or				
			I_{\times} =	9.6/6.0 = 1.6 (A) 2.4 - 1.6 = 0.8 (A) 9.6/0.8) = 12 Ω		(C1) (C1) (A1)	[3]
		(iii)	powe	$er = VI \text{ or } EI \text{ or } V^2/R \text{ or } E^2/R \text{ or } I^2R$		C1	
				= $24 \times 2.4 \text{ or } (24)^2 / 10 \text{ or } (2.4)^2 \times 10$ = 57.6 W (allow 2 or more s.f.)		A1	[2]
	(d)	pow	er de	ecreases		MO	
				nstant or power = $24 \times$ current, and current decreases constant or power = 24^2 /resistance, and resistance in		A1	[1]
7	(a)	wav	<u>es</u> fro	om the double slit are coherent/constant phase differe	ence	B1	
		wav	<u>es</u> (fı	rom each slit) overlap/superpose/meet (not interfere)		B1	
		maximum/bright fringe where path difference is $n\lambda$ or phase difference is $n360^{\circ}/2\pi n$ rad or minimum/dark fringe where path difference is $(n + \frac{1}{2})\lambda$					
				um/dark fringe where path difference is $(n + \frac{1}{2})\lambda$			
		or p	hase	difference is $(2n + 1) 180^{\circ}/(2n + 1)\pi$ rad		B1	[3]
	(b)	$v = i$ $\lambda = i$		10^8) / $670 \times 10^{12} = 448$ (or 450) (nm)		C1 M1	[2]
	(c)		12 / ! Dλ/	9 w) = $(2.8 \times 450 \times 10^{-9}) / (12 / 9 \times 10^{-3})$ [allow nm, m = 9.5×10^{-4} m [9.4×10^{-4} m using λ = 448 nm]	nm]	C1 C1 A1	[3]
	(d)		_	has) larger/higher/longer wavelength (must be comp irther apart/larger separation	arison)	M1 A1	[2]