MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme GCE AS/A LEVEL – May/June 2014	Syllabus 9702	Paper 43	
			Section A			
1	• •		ne bringing unit mass nity (to the point)		M1 A1	[2]
	(b) <i>E</i>	Р = — <i>т</i>	ϕ		B1	[1]
	(c) <i>ø</i>	∞ 1/ <i>x</i>			C1	
	e	either at 6R from centre, potential is $(6.3 \times 10^7)/6$ (= 1.05×10^7 J kg ⁻¹ and at 5R from centre, potential is $(6.3 \times 10^7)/5$ (= 1.26×10^7 J kg ⁻¹ change in energy = $(1.26 - 1.05) \times 10^7 \times 1.3$ = 2.7×10^6 J			C1 C1 A1	
	O		hange in potential = $(1/5 - 1/6) \times (6.3 \times 10^7)$ hange in energy = $(1/5 - 1/6) \times (6.3 \times 10^7) \times 1.3$ = 2.7×10^6 J		(C1) (C1) (A1)	[4]
2	• •		ber of atoms if carbon-12		M1 A1	[2]
	(b) (i) amo	ount = 3.2/40 = 0.080 mol		A1	[1]
	(ii		= <i>nRT</i> 210 × 10 ⁻⁶ = 0.080 × 8.31 × 310 9.8 × 10 ⁵ Pa <i>(do not credit if T in °C not K</i>)		C1 A1	[2]
	(iii) eithe	er $pV = 1/3 \times Nm < c^2 >$ $N = 0.080 \times 6.02 \times 10^{23} (= 4.82 \times 10^{22})$ and $m = 40 \times 1.66 \times 10^{-27} (= 6.64 \times 10^{-26})$ $9.8 \times 10^5 \times 210 \times 10^{-6} = 1/3 \times 4.82 \times 10^{22} \times 6.64 \times 10^{-26}$ $< c^2 > = 1.93 \times 10^5$ $c_{\text{RMS}} = 440 \text{ m s}^{-1}$	10 ^{−26} × < <i>c</i> ²>	C1 C1 A1	[3]
		or	$Nm = 3.2 \times 10^{-3}$ 9.8 × 10 ⁵ × 210 × 10 ⁻⁶ = 1/3 × 3.2 × 10 ⁻³ × <c<sup>2> <c<sup>2> = 1.93 × 10⁵</c<sup></c<sup>		(C1) (C1)	[]
		or	$c_{\text{RMS}} = 440 \text{ m s}^{-1}$ $1/2 \ m < c^2 > = 3/2 \ kT$ $1/2 \times 40 \times 1.66 \times 10^{-27} < c^2 > = 3/2 \times 1.38 \times 10^{-23} \times 3$ $< c^2 > = 1.93 \times 10^5$ $c_{\text{RMS}} = 440 \text{ m s}^{-1}$	10	(A1) (C1) (C1) (A1)	
			(if T in °C not K award max 1/3, unless already per	alised in (b)(ii))		

	Page 3		3 Mark Scheme GCE AS/A LEVEL – May/June 2014			Syllabus 9702	Paper 43	r		
3	or lic			hange in v quid volum	olume = (1 ne << volu		10 ⁻³) r	1 0.02	M1 A1	[2]
	(b)	(i)	1 . h	eating of s	ystem/ther	mal energy s	upplied to the	system	B1	[1]
			2 . w	ork done o	on the syste	em			B1	[1]
		(ii)	ΔU		10 ⁶) — (1.7 ⁻ 0 ⁶ J (3 s.	1×10^5) .f. needed)			C1 A1	[2]
4	(a)	kin	etic (e	energy)/KE	I/E _K				B1	[1]
	(b)	or ne\	<u>n</u> w amp	<u>nax</u> È prop plitude is 1		(amplitude) ² /	′equivalent nun	nerical working	B1 B1 B1	[3]
5	(a)	gra	c	urve with o	decreasing	•	V_0 from $x = 0$ t r, 0.25 V_0)	o <i>x</i> = <i>r</i>	B1 M1 A1	[3]
	(b)	gra	c p	urve with o assing thre	decreasing ough (2 <i>r</i> , ½		n (<i>r</i> , <i>E</i> ₀)	ıst not touch x-axis)	B1 M1 A1	[3]
6	(a)	(i)	ene	rgy = EQ		2			C1	
				= 9.0 = 0.20	× 22 × 10 ^{-:}) J	3			A1	[2]
		(ii)		C = Q/V / = (22 × 1 = 4.7 V	0 ⁻³)/(4700	× 10 ⁻⁶)			C1 A1	[2]
			2.	either	$E = \frac{1}{2}C$	∕ ² 4700 × 10 ⁻⁶	× 1 7 ²		C1	
						× 10 ^{−2} J	× 4.7		A1	[2]
				or	$E = \frac{1}{2}Q^{1}$ $= \frac{1}{2} \times$	V 22 × 10 ⁻³ × 4	1.7		(C1)	
					= 5.1	× 10 ^{−2} J			(A1)	1
				or		$(22 \times 10^{-3})^2/4$	4700 ×10 ⁻⁶		(C1))
					= 5.1	× 10 ^{−2} J			(A1)	1

	Page 4		Mark Scheme	Syllabus	Paper	•	
			GCE AS/A LEVEL – May/June 2014	9702	43		
	(b)	energy l (award o	B1	[1]			
7	(a)	graph: $V_{\rm H}$ increases from zero when current switched on $V_{\rm H}$ then non-zero constant $V_{\rm H}$ returns to zero when current switched off				[3]	
	(b)		luced) e.m.f. proportional to rate change of (magnetic) flux (linkage)		M1 A1	[2]	
		zero	se as current is being switched on o e.m.f. when current in coil se in opposite direction when switching off		B1 B1 B1	[3]	
8	(a)	allow: d	discrete and equal amounts (of charge) allow: discrete amounts of 1.6×10^{-19} C/elementary charge/e integral multiples of 1.6×10^{-19} C/elementary charge/e				
	(b)	weight = 4.8 × 10 <i>q</i> = 4.9 :	= <i>qV/d</i>) ^{−14} = (<i>q</i> × 680)/(7.0 × 10 ^{−3}) × 10 ^{−19} C		C1 A1	[2]	
	(c)		tary charge = 1.6×10^{-19} C (allow 1.6×10^{-19} C to $1.7 \times$ the values are (approximately) multiples of this	± 10 ^{−19} C)	M0		
		or i	t is a common factor highest common factor		C1 A1	[2]	
9	(a)	max max rate	time delay between illumination and emission x. (kinetic) energy of electron dependent on frequency x. (kinetic) energy of electron independent of intensity e of emission of electrons dependent on/proportional to be separate statements, one mark each, maximum 3)	intensity	В3	[3]	
	(b)	• •	oton) interaction with electron may be below surface ergy required to bring electron to surface		B1 B1	[2]	

	Pa	ge 5		Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2014	9702	43	
		(ii)	1. threshold frequency = 5.8×10^{14} Hz		A1	[1]
			$2. \ \Phi = hf_0$		C1	
			= $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$ = 3.84×10^{-19} (J)		C1	
			$= (3.84 \times 10^{-19})/(1.6 \times 10^{-19})$			
			= 2.4 eV		A1	[3]
			or			
			$hf = \Phi + E_{MAX}$		(C1)	
			chooses point on line and substitutes values E_{MAX} , f and equation with the units of the hf term converted from J to		(C1)	
			ϕ = 2.4 eV		(A1)	
10	(a)		ergy required to separate the nucleons (in a nucleus)		M1	
			nfinity ow reverse statement)		A1	[2]
		X ⁻	· · · · · · · · · · · · · · · · · · ·			
	(b)	(i)			C1	
			= 9.11×10^{-3} u binding energy = $9.11 \times 10^{-3} \times 930$		C1	
			= 8.47 MeV	0.54.44.10	A1	[3]
			(allow 930 to 934 MeV so answer could be in range 8.47 to (allow 2 s.f.)	8.51 MeV)		
		(ii)	$\Delta m = 211.70394 - 209.93722$			
			= 1.76672 u binding energy per nucleon = (1.76672 × 930)/210		C1 C1	
			= 7.82 MeV		A1	[3]
			(allow 930 to 934 MeV so answer could be in range 7.82 to (allow 2 s.f.)	7.86 MeV)		
	(c)	<u>tota</u>	al binding energy of barium and krypton		M1	
		is g	reater than binding energy of uranium		A1	[2]
			Section B			
	(-)	(1)				ГА 1
11	(a)	(1)	inverting amplifier		B1	[1]
		(ii)	gain is <u>very</u> large/infinite <i>V</i> ⁺ is earthed/zero		B1 B1	
			for amplifier not to saturate, P must be (almost) earth/zero		B1	[3]
	(b)	(i)	$R_{\rm A}$ = 100 k Ω		A1	
	. ,	.,	$R_{\rm B}$ = 10 k Ω		A1	101
			V _{IN} = 1000 mV		A1	[3]
		(ii)	variable range meter		B1	[1]

	Pa	ge 6		Syllabus	Paper	•	
			GCE AS/A LEVEL – May/June 2014 9702			43	
12	(a)	taken fro to give in repeated	s of X-ray images (for one section/slice) n from different angles ve image of the section/slice ated for many slices ild up three-dimensional image (of whole object)			M1 M1 A1 M1 A1	[5]
	(b)	deduction of background from readings division by three					
		P=5 G	Q=9 R=7 S=	13			
		(four cor	rect 2/2, three co	rrect 1/2)		A2	[4]
13	(a)	 a) e.g. noise can be eliminated/waveform can be regenerated extra bits of data can be added to check for errors cheaper/more reliable greater <u>rate</u> of transfer of data 					[2]
		(76	ach, max 2)			B2	[2]
	(b)		bits all at one tin s the bits one afte			B1 B1	[2]
	(c)	sampling	a frequency must	be higher than/(at least) t	twice frequency to be sample	d M1	
	()	either higher (range of) frequencies reproduced on the disc					
		<i>either</i> h	igher quality (of s	ound) on disc		A1	
		or h	igh quality (of so	und) not required for phor	ne	B1	[3]
14	(a)	reductior	n in power	(allow intensity/amplitude	e)	B1	[1]
	(b)	(i) atter	nuation = 2.4×30 = 72 dB)		A1	[1]
							[1]
		72 =	i/attenuation/dB = = 10 lg(P _{IN} /P _{OUT})	$ 10 \lg(P_2/P_1) \\ or -72 = 10 \lg(F_2) $	P _{OUT} /P _{IN})	C1 C1	101
		ratio	$p = 1.6 \times 10^7$			A1	[3]
	(c)			e manageable numbers to amplifiers are added, not		B1	[1]