CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the May/June 2015 series

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

		Cambridge International AS/A Level – May/June 2015			22	
1	(a)	(w	ork =) force \times distance or force \times displacement or (W =) $F \times d$		M1	
		uni	its of work: $kg m s^{-2} \times m = kg m^2 s^{-2}$		A1	[2]
	(b)	(p.	d. =) work (done) or energy (transformed) (from electrical to other form charge	<u>s)</u>	B1	[1]
	(c)		= V/I its of V : $kg m^2 s^{-2}/A s$ and units of I : A		B1 C1	
			= P/I^2 [or $P = VI$ and $V = IR$] its of P : kg m ² s ⁻³ and units of I : A		(B1) (C1)	
			or $R = V^2/P$ units of V: kg m ² s ⁻² /As and units of P: kg m ² s ⁻³		(B1) (C1)	
		uni	its of R : $(kg m^2 s^{-2}/A^2 s =) kg m^2 s^{-3} A^{-2}$		A1	[3]
2	(a)	spe	eed decreases/stone decelerates to rest/zero at 1.25s		B1	
		spe	eed then increases/stone accelerates (in opposite direction)		B1	[2]
	(b)	(i)	$v = u + at$ (or $s = ut + \frac{1}{2}at^2$ and $v^2 = u^2 + 2as$)		C1	
			= 0 + (3.00 - 1.25) × 9.81		C1	
			= $17.2 (17.17) \mathrm{m s^{-1}}$		A1	[3]
		(ii)	$s = ut + \frac{1}{2}at^2$			
			$s = \frac{1}{2} \times 9.81 \times (1.25)^2$ [= 7.66] $s = \frac{1}{2} \times 9.81 \times (1.75)^2$ [= 15.02]		C1 C1	
			(distance = 7.66 + 15.02)			
			$[v = u + at = 0 + 9.81 \times (2.50 - 1.25) = 12.26 \mathrm{ms^{-1}}]$			
			or $s = \frac{1}{2} \times 9.81 \times (1.25)^2$ [= 7.66] $s = 12.26 \times 0.50 + \frac{1}{2} \times 9.81 \times (3.00 - 2.50)^2$ [= 7.36]		(C1) (C1)	
			(distance = $2 \times 7.66 + 7.36$)			
			Example alternative method: $s = (v^2 - u^2)/2a = (12.26^2 - 0)/2 \times 9.81 [= 7.66]$ $s = (v^2 - u^2)/2a = (17.17^2 - 12.26^2)/2 \times 9.81 [= 7.36]$		(C1) (C1)	
			(distance = 2 × 7.66 + 7.36)			

Mark Scheme

Page 2

Syllabus

Paper

Pa	ige 3	3	Mark Scheme S		Paper		
			Cambridge International AS/A Level – May/June 2015 9702			22	
			22.7 (22.69 or 23) m		A1	[3]	
(iii)		iii)	(s = 15.02 – 7.66 =) 7.4 (7.36) m (ignore sign in answer)		A1		
			down		A1	[2]	
	(c)	stra	sight line from positive value of v to t axis		M1		
		sar	ne straight line <u>crosses</u> t axis at $t = 1.25$ s		A1		
		sar	ne straight line continues with same gradient to $t = 3.0 \mathrm{s}$		A1	[3]	
3	(a)	(i)	(vertical component = 44 sin 30° =) 22 N		A1	[1]	
		(ii)	(horizontal component = 44 cos 30° =) 38(.1) N		A1	[1]	
	(b)	W:	< 0.64 = 22 × 1.60		C1		
		(W	=) 55 N		A1	[2]	
	` ,	or <i>I</i> or 3	as a horizontal component (not balanced by <i>W</i>) F has 38 N acting horizontally 88 N acts on wall vertical component of <i>F</i> does not balance <i>W</i>				
			and W do not make a closed triangle of forces		B1	[1]	
	(d)	line	from P in direction towards point on wire vertically above W and di	rection up	B1	[1]	
4	(a)	a) $(p =) mv$			C1		
		Δρ	$(= -6.64 \times 10^{-27} \times 1250 - 6.64 \times 10^{-27} \times 1250) = 1.66 \times 10^{-23} \text{ Ns}$		A1	[2]	
	(b)	(i)	molecule collides with wall/container and there is a change in more	entum	B1		
			change in momentum / time is force or $\Delta p = Ft$		B1		
			many/all/sum of molecular collisions over surface/area of container pressure	produces	B1	[3]	
		(ii)	more collisions per unit time so greater pressure		B1	[1]	
5	(a)	cur	ved line showing decreasing gradient with temperature rise		M1		
		sm	ooth line not touching temperature axis, not horizontal or vertical any	where	A1	[2]	
	(b)	(i)	(no energy lost in battery because) no/negligible internal resistance)	B1	[1]	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9702	22
	•		

(ii)
$$I = V/R$$

$$= 8/15 \times 10^3 \text{ or } 1.6/3.0 \times 10^3 \text{ or } 2.4/4.5 \times 10^3 \text{ or } 12/22.5 \times 10^3 \qquad \text{C1}$$

$$= 0.53 \times 10^{-3} \text{A} \qquad \text{A1} \qquad [2]$$
(iii) $p.d. \arccos X = 12 - 8.0 - 3.0 \times 10^3 \times 0.53 \times 10^{-3} \ (= 2.4 \text{V}) \qquad \text{C1}$

$$R_X = 2.4/(0.53 \times 10^{-3}) \qquad \text{C1}$$
or $R_{\text{res}} = 12/0.53 \times 10^{-3} \ (= 22.5 \times 10^3 \, \Omega) \qquad \text{C1}$

$$R_X = (22.5 - 15.0 - 3.0) \times 10^3 \qquad \text{C1}$$

$$4.5(2) \times 10^3 \, \Omega \qquad \text{A1} \qquad [3]$$
(iv) resistance decreases hence current (in circuit) is greater \text{M1}
p.d. across X and Y is greater hence p.d across Z decreases \text{A1}
or explanation in terms of potential divider: R_Z decreases so $R_Z/(R_X + R_X + R_Z)$ is less \text{(M1)}
therefore p.d. across Z decreases \text{(M1)} \text{[2]}

6 (a) progressive waves transfer/propagate energy and stationary waves do not \text{B1}
\text{amplitude} constant for progressive wave and varies (from max/antinode to min/zero/node) for stationary wave \text{B1}
\text{adjacent particles in phase for stationary wave and out of phase for progressive wave \text{wave} \text{(B1)} \text{[2]}

(b) (i) \text{wave/microwave from source/S} reflects at reflector/R \text{B1}
reflected and (further) incident waves overlap/meet/superpose \text{B1}
\text{wave shave same frequency/wavelength/period and speed} (so stationary waves formed)

(ii) \text{determine/measure} the distance between adjacent minima/nodes or maxima/antinodes or across specific number of nodes/antinodes
\text{wavelength is twice distance between adjacent minima/nodes or maxima/antinodes or across specific number of nodes/minima or maxima/antinodes (or other correct method of calculation of wavelength from massurement)
\text{B1} \text{[2]}

		Cambridge International AS/A Level – May/June 2015 9702			22	2
	(c)	$v = f\lambda$			C1	
		$f = 3.0 \times 10$	C1			
		11 (10.7) GHz				
7	(a)	(a) 92 protons and 143 neutrons			B1	[1]
	(b)					
		a b c d	value 1 0 141 55	(a and b both required)	B1 B1 B1	[3]
	(c)	kinetic ener	rgy (of produc	ts) or gamma/ γ (radiation or photon)	B1	[1]
	(d)	(total) mass		side/reactants is <u>greater</u> than (total) mass on right-hand	M1	

difference in mass is (converted to) energy

Mark Scheme

Syllabus

Paper

[2]

Α1

Page 5