MARK SCHEME for the October/November 2008 question paper

9702 PHYSICS

9702/02 Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Pag	e 2	Mark Scheme GCE A/AS LEVEL – October/November 2008	Syllabus 9702	Paper 02	•
			GCE A/AS LEVEL - October/November 2008	9702	02	
1	(a)	(i)	Q = It (allow any subject for the equation)		B1	[1]
		(ii)	I t (allow 1 mark only if all three quoted)		B1 B1	[2]
	(b)	(i)	base unit of <i>I</i> is A base unit of <i>n</i> is m^{-3} (not / m^{-3}) base unit of <i>S</i> is m^2 base unit of <i>q</i> is A s (not C) base unit of <i>v</i> is $m s^{-1}$ (-1 for each error or omission)		В3	[3]
		(ii)	A = m ⁻³ m ² A s (m s ⁻¹) ^k e.g. for m: 0 = $-3 + 2 + k$		M1	
			<i>k</i> = 1		A1	[2]
2	(a)	(i)	$v^2 = 2as$ $v^2 = 2 \times 0.85 \times 9.8 \times 12.8$ $v = 14.6 \text{ m s}^{-1}$		C1 A1	[2]
		(ii)	time = 29.3 / 14.6 = 2.0 s (any acceleration scores 0 marks; allow 1 s.f.)		C1 A1	[2]
	(b)	or or so d	er 60 km h ⁻¹ = 16.7 m s ⁻¹ 14.6 m s ⁻¹ = 53 km h ⁻¹ 22.1 m s ⁻¹ = 79.6 km h ⁻¹ driving within speed limit reaction time is too long / too slow		M1 A1 B1	[3]
3	(a)	cou	 ment: force × <u>perpendicular</u> distance of force from pivot / axis / point ple: (magnitude of) one force × <u>perpendicular</u> distant between the two forces nalise the 'perpendicular' omission once only) 	nce	M1 A1 M1 A1	[4]
	(b)	(i)	$W \times 4.8 = (12 \times 84) + (2.5 \times 72)$ W = 250 N (248 N)		C1 A1	[2]
		(ii)	either friction at the pivot or small movement of we	ights	B1	[1]
4	(a)	(i)	either force = $e \times (V / d)$ or $E = V/d$ = $1.6 \times 10^{-19} \times (250 / 7.6 \times 10^{-3})$ = $5.3 \times 10^{-15} N$		C1 C1 A1	[3]
		(ii)	either $\Delta E_{\rm K} = eV$ or $\Delta E_{\rm K} = Fd$ = 1.6 × 10 ⁻¹⁹ × 250 = 5.3 × 10 = 4.0 × 10 ⁻¹⁷ J (allow full credit for correct working via calculation of a	$r^{-15} \times 7.6 \times 10^{-3}$ a and v)	C1 M1 A0	[2]

© UCLES 2008

Page 3		e 3		Mark Scheme		Paper	•
			GCE A/AS L	EVEL – October/November 2008	Syllabus 9702	02	
		. ,	v = 9.4 $v^2 = 2as$ $v^2 = (2)$	$2mv^2$ $y^{-17} = \frac{1}{2} \times 9.1 \times 10^{-31} \times v^2$ $\times 10^6 \text{ m s}^{-1}$ s and $a = F/m$ $\times 5.3 \times 10^{-15} \times 7.6 \times 10^{-3})/(9.11 \times 10^{-3})$ $\times 10^6 \text{ m s}^{-1}$	⁻³¹) (C1) (A1)	C1 A1	[2]
	(b)	(İf sta awar	ates ΔE_{κ} does n	electric) potential difference ot depend on uniformity of field, then d as an M mark) same	1	M2 A1	[3]
5	(a)			/ erratic / zig-zag movement (<i>do not allow molecules / atoms</i>)		M1 A1	[2]
	(b)			qual / unbalanced collision rate <u>s</u> (on e due to) random motion of (gas) mo		B1 B1	[2]
	(c)	eithe or	this prevent particle is m	th air molecules average out s haphazard motion ore massive / heavier / has large ine use only small movements / acceler	. ,	M1 A1	[2]
6	(a)	bend	ing / spreading	edge / aperture / slit /(edge of) obstac of wave (into geometrical shadow) ng at a boundary)	cle	M1 A1	[2]
	(b)	(apparatus e.g. detector e.g. what is observed	laser & slit / point source & slit / lan microwave source & slit water / ripple tank, source & barrier screen aerial / microwave probe strobe / lamp		B1 B1 B1	[3]
		(ii) a	apparatus e.g. detector e.g. what is observed	loudspeaker, and slit / edge microphone & c.r.o. / ear		B1 B1 B1 B1	[3]
7	(a)	eithe or	hence V = EF	same throughout the circuit (I + Q) (M1) A1) A0)	B1 B1 A0	[2]

Page 4		e 4	Mark Schen	ne	Syllabus F		aper	
			GCE A/AS LEVEL – Octobe	r/November 2008	9702	02		
	(b)	(i)	(as temperature rises), resistance of (thermistor) decreases <i>either</i> resistance of parallel combination decreases			M1		
			or p.d. across 5 k Ω resistor / thermistor decreases					
			p.d. across 2000 Ω resistor / voltmeter reading increases				[3]	
		(;;)	if R is the resistance of the paral					
		(11)	if <i>R</i> is the resistance of the parallel combination, either 3.6 = $(2 \times 6) / (2 + R)$ or current in 2 k Ω resistor = 1.8 mA					
			$R = 1.33 \text{ k}\Omega$	current in 5 k Ω res		C1 C1		
			$\frac{1}{1.33} = \frac{1}{5} + \frac{1}{T}$	current in thermisto	or = 1.32 mA	C1		
			$T = 1.82 \text{ k}\Omega$	<i>T</i> = 2.4 / 1.32 = 1.8	2 kΩ	A1	[4]	
8	(a)	per	<u>cleus</u> has constant probability of decay unit time / in a given time ow 1 mark for 'cannot predict which <u>nucleus</u> will decay next')				[2]	
	(b)	(i)	count rate / activity decreases			B1	[1]	
		(ii)	count rate fluctuates / is not smo	ooth		B1	[1]	
	(c)	eith or	er the (decay) curves are similar curves indicate same half-life	/ same		B1	[1]	