MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/41 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2		Mark Scheme: Teachers' version			Syllabus	Pape	Paper	
			GCE AS	A LEVEL – Octo	ber/November	2010	9702	41	
				S	Section A				
1	(a) force	e per	unit mass	(ratio idea e	essential)			B1	[1]
	(b) grap	(b) graph: correct curvature from $(R, 1.0 g_S)$ & at least one other correct point					M1 A1	[2]	
	(c) (i)	(c) (i) fields of Earth and Moon are in opposite directions							
		or so th (allow	any other ere is a poir $w F_{\rm E} = -F_{\rm M} f$	sensible comme to where it is zero for 2 marks)	ent			A1 A0	[2]
	(ii)	GM _E (6.0 = x = 5	/ x ² = GM _M / × 10 ²⁴) / (7.4 4 R _E	$(D-x)^2$ 4 × 10 ²²) = x ² / (60	$(R_{\rm E}-x)^2$			C1 C1 A1	[3]
	(iii)	grapl	n: g = 0 at le g _E and g _N correct cu	east ⅔ distance to ₁ in opposite direo urvature (by eye)	o Moon ctions and g _E > g _M at รเ	urface		B1 M1 A1	[3]
2	(a) (i)	no fo	rces (of attr	action or repulsio	n) between atom	ns / moleci	ules / particle	s B1	[1]
	(ii)	 (ii) sum of kinetic and potential energy of atoms / molecules due to random motion 					M1 A1	[2]	
	(iii)	(rand	lom) kinetic	energy increases	s with temperatur	e		M1	
		no po (so ir	ncrease in te	gy emperature increa	ases internal ene	ergy)		A1	[2]
	(b) (i)	zero						A1	[1]
	(ii)	work	done = $p\Delta$	V				C1	
			= 4.0 = 240	$1 \times 10^{3} \times 6 \times 10^{-4}$ J (<i>ignore a</i>	nny sign)			A1	[2]
	(iii)	r		I	Γ			l	
			change	work done / J	heating / J	increase ene	e in internal ergy / J		

$\begin{array}{c} P \rightarrow Q \\ Q \rightarrow R \\ R \rightarrow P \end{array}$	+240 0 -840	-600 +720 +480	-360 +720 -360

(correct signs essential) (each horizontal line correct, 1 mark – max 3)

B3 [3]

	Page 3		•	Mark Scheme: Teachers' version Sy	llabus	Paper	
				GCE AS/A LEVEL – October/November 2010	9702	41	
3	(a)	(i)	reso	nance		B1	[1]
		(ii)	amp	litude 16mm and frequency 4.6Hz		A1	[1]
	(b)	(i)	a = a = =	$(-)\omega^2 x \text{ and } \omega = 2\pi f$ $4\pi^2 \times 4.6^2 \times 16 \times 10^{-3}$ 13.4 m s^{-2}		C1 C1 A1	[3]
		(ii)	F = =	<i>ma</i> 150 × 10 ⁻³ × 13 4		C1	
			=	2.0N		A1	[2]
	(c)	line pea	alwa ak is a	ys 'below' given line and never zero t 4.6Hz (or slightly less) and flatter		M1 A1	[2]
4	(a)	cha	rge /	potential (difference) (<i>ratio must be clear</i>)		B1	[1]
	(b)	(i)	V =	$Q / 4\pi \varepsilon_0 r$		B1	[1]
		(ii)	C = so C	$Q/V = 4\pi \varepsilon_0 r$ and $\frac{4\pi \varepsilon_0}{10}$ is constant $C \propto r$		M1 A0	[1]
	(c)	(i)	r = 0 r = (0 = 6.7	$2 / 4\pi\epsilon_0 r$ $6.8 \times 10^{-12}) / (4\pi \times 8.85 \times 10^{-12})$ $1 \times 10^{-2} m$		C1 C1 A1	[3]
		(ii)	Q =	$CV = 6.8 \times 10^{-12} \times 220$ = 1.5 × 10 ⁻⁹ C		A1	[1]
	(d)	(i)	V = = 83	$Q/C = (1.5 \times 10^{-9}) / (18 \times 10^{-12})$ V		A1	[1]
		(ii)	eithe	er energy = $\frac{1}{2}CV^2$ $\Delta E = \frac{1}{2} \times 6.8 \times 10^{-12} \times 220^2 - \frac{1}{2} \times 18 \times 10^{-12} \times 83^2$		C1 C1	
			or	= $1.65 \times 10^{-7} - 6.2 \times 10^{-6}$ = 1.03×10^{-7} J energy = $\frac{1}{2}$ QV $\Delta E = \frac{1}{2} \times 1.5 \times 10^{-9} \times 220 - \frac{1}{2} \times 1.5 \times 10^{-9} \times 83$ = 1.03×10^{-7} J		A1 (C1) (C1) (A1)	[3]

	Page 4			Mark Scheme: Teachers' versionSyllabusGCE AS/A LEVEL – October/November 20109702			Paper 41	
5	(a)	field	into	(the plane of) the paper			B1	[1]
	(b)	force mv ² B	e due / r = = (20 = 0.4	e to magnetic field <u>provide</u> <i>Bqv</i>) × 1.66 × 10 ⁻²⁷ × 1.40 × ² !54 T	es the centripetal force 10 ⁵) / (1.6 × 10 ^{−19} × 6.4 × 10 ^{−2}	²)	B1 C1 B1 A0	[3]
	(c)	(i)	sem	<u>circle</u> with diameter great	er than 12.8 cm		B1	[1]
		(ii)	new	flux density = $\frac{22}{20} \times 0.454$ B = 0.499 T	4		C1 A1	[2]
6	(a)	(i)	e.g.	prevent flux losses / impro	ove flux linkage		B1	[1]
		(ii)	flux i e.m. indu	n core is changing f. / current (induced) <u>in co</u> ced current in core cause	o <u>re</u> s heating		B1 B1 B1	[3]
	(b)	(i)	that in a	value of the direct current esistor	producing same (mean) pov	ver / heating	M1 A1	[2]
		(ii)	powe V _P I _F	er in primary = power in $S = V_S I_S$	secondary		M1 A1	[2]
7	(a)	(i)	e.g.	electron / particle diffraction	on		B1	[1]
		(ii)	e.g.	photoelectric effect			B1	[1]
	(b)	(i)	6				A1	[1]
		(ii)	char λ = <i>I</i> = (6. = 4.4	ge in energy = 4.57 × 10 ⁻ bc / <i>E</i> 63 × 10 ⁻³⁴ × 3.0 × 10 ⁸) / (4 k × 10 ⁻⁷ m	⁻¹⁹ J 4.57 × 10 ⁻¹⁹)		C1 A1	[2]
8	(a)	splitt into t	ing a two (of a heavy nucleus (<i>n</i> lighter) nuclei of <u>approxin</u>	ot atom/nuclide) nately same mass		M1 A1	[2]
	(b)	¹ n ⁴ 2He ⁷ 3Li		(allow $\frac{4}{2}\alpha$)			M2 A1	[3]
	(c)	emitted range o lose kin kinetic e		particles have kinetic ener particles in the control roo tic energy in rods nergy of particles converte	gy ds is short / particles stopped ed to thermal energy	in rods /	B1 B1 B1	[3]

	Page 5			Mark Scheme: Teachers' version Syllabus			Paper		
				GCE AS/A LEVEL – October/November 2010 9702					
				Section B					
9	(a)	(i)	non-	inverting (amplifier)		B1	[1]		
		(ii)	(G =) 1 + R_2 / R_1		B1	[1]		
	(b)	(i)	gain outp	gain = 1 + 100 / 820 output = 17 mV					
		(ii)	9V (<i>R</i> ₂ / (1 + (1 -	9V (R_2 / R_1 scores 0 in (a)(ii) but possible 1 mark in each of (b)(i) and (b)(ii) (1 + R_1 / R_2) scores 0 in (a)(ii), no mark in (b)(i), possible 1 mark in (b)(ii) (1 - R_2 / R_1) or R_1 / R_2 scores 0 in (a)(ii), (b)(i) and (b)(ii))					
10	(a)	(i)	dens	sity × <u>speed of wave</u> (in the medium)		B1	[1]		
		(ii)	ρ = =	$(7.0 \times 10^{6}) / 4100$ 1700 kg m ⁻³		A1	[1]		
	(b)	(i)	I = 1	$T_{\rm T} + I_{\rm R}$		B1	[1]		
		(ii)	1. α	$= (0.1 \times 10^{6})^{2} / (3.1 \times 10^{6})^{2}$ = 0.001		C1 A1	[2]		
			2. α	≈ 1		A1	[1]		
	(c)	eith or	ner	<i>er</i> very little transmission at an air-skin boundary (almost) complete transmission at a gel-skin boundary when wave travels in or out of the body no gel, majority reflection with gel, little reflection when wave travels in or out of the body					
11	(a)	(i)	unwanted random power / signal / energy				[1]		
		(ii)	loss	B1	[1]				
	(b)	(i)	eithe	er signal-to-noise ratio at mic. = 10 lg (P ₂ / P ₁) = 10 lg ({2.9 × 10 ⁻⁶ } / { = 29 dB	3.4 × 10 ⁻⁹ })	C1			
				maximum length = $(29 - 24) / 12$ = 0.42 km = 420 m		C1 A1	[4]		
			or	or signal-to-noise ratio at receiver = $10 \lg (P_2 / P_1)$ at receiver, $24 = 10 \lg (P / \{3.4 \times 10^{-9}\})$ $P = 8.54 \times 10^{-7} W$ power loss in cables = $10 \lg (\{2.9 \times 10^{-6}\} / \{8.54 \times 10^{-7}\})$ = $5.3 dB$					
				(A1)					

	Page 6	M	ark Scheme: Teachers' version	Syllabus	Paper	r
		GCE AS	6/A LEVEL – October/November 2010	9702	41	
	(ii) use cou (rep	an amplifier pled to the r peater amplit	nicrophone ïers scores no mark)		M1 A1	[2]
12	(a) (carrier satellite signal a at a diffe different e.g. of fr (<i>two B1</i>	wave) transr receives gre mplified and erent (carrier frequencies requencies u marks plus	nitted from Earth to satellite eatly attenuated signal transmitted <u>back to Earth</u>) frequency s prevent swamping of uplink signal used (6/4 GHz, 14/11 GHz, 30/20 GHz) any two other for additional physics)	 (1) (1) (1) (1) 	B1 B1 B2	[4]
	(b) advanta disadva	ge: e.g. e.g. ntage: e.g.	much shorter time delay because orbits are much lower whole Earth may be covered in several orbits / with network <i>either</i> must be tracked or limited use in any one orbit		M1 A1 (M1) (A1) M1	[4]
			more satellites required for continuous o	peration	AT	[4]