MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/43 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2				Syllabus	Paper			
				GCE A LEVEL – October/November 2010	9702	43			
	Section A								
1	(a)	(i)		of change of angle / angular displacement pt out by radius		M1 A1	[2]		
		(ii)	ω×	$T = 2\pi$		B1	[1]		
	(b)	eith r ³ × GM	er n $4\pi^2$	al force is provided by the gravitational force $mr(2\pi/T)^2 = GMm/r^2$ or $mr\omega^2 = GMm/r^2$ $= GM \times T^2$ s a constant (c)		B1 M1 A1 A0	[4]		
	(c)	(i)		er $T^2 = (45/1.08)^3 \times 0.615^2$ or $T^2 = 0.30 \times 45^3$ 165 years		C1 A1	[2]		
		(ii)	spee	ed = $(2\pi \times 1.08 \times 10^8) / (0.615 \times 365 \times 24 \times 3600)$ = 35 km s ⁻¹		C1 A1	[2]		
2	(a)	volu time no f ator	ume c e of c forces ms / r	molecules / particles behave as elastic (identical) sphere of atoms / molecules negligible compared to volume of ollision negligible to time between collisions s of attraction or repulsion between atoms / molecules nolecules / particles are in (continuous) random motion r, 1 each)	containing vessel	(1) (1) (1) (1) (1) B4	[4]		
	(b)	1/3 № n =	lm <c² N/N_A</c² 	$Im < c^2$ and $pV = nRT$ or $pV = NkT$ $r^2 = nRT$ or $= NkT$ and $< E_K > = \frac{1}{2}m < c^2 >$ or $k = R/N_A$ $\frac{3}{2} \times R/N_A \times T$		B1 B1 B1 A0	[3]		
	(c)	(i)		tion represents <i>either</i> build-up of nucleus from light <i>or</i> build-up of heavy nucleus fror usion reaction		M1 A1	[2]		
		(ii)	1.2 ×	on and deuterium nucleus will have equal kinetic energy $\times 10^{-14} = \frac{3}{2} \times 8.31 / (6.02 \times 10^{23}) \times T$ $5.8 \times 10^8 \text{ K}$ of $E = 2.4 \times 10^{-14}$ giving 1.16 × 10 ⁹ K scores 1 mark)	ies	B1 C1 A1	[3]		
	((iii)	eithe or	er inter-molecular / atomic / nuclear forces exist proton and deuterium nucleus are positively charge	d / repel	B1	[1]		

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	•
			GCE A LEVEL – October/November 2010	9702	43	
3	(a)	(i)	8.0 cm		A1	[1]
	((ii)	$2\pi f = 220$ f = 35 (condone unit)		C1 A1	[2]
	(i	iii)	line drawn mid-way between AB and CD (allow	±2 mm)	B1	[1]
	(i	iv)	$v = \omega a$ = 220 × 4.0		C1	
			$= 220 \times 4.0$ = 880 cm s ⁻¹		A1	[2]
	(b)	(i)	 line drawn 3 cm above AB (allow ±2 mm) arrow pointing upwards 		B1 B1	[1] [1]
		(ii)	 line drawn 3 cm above AB (allow ±2 mm) arrow pointing downwards 		B1 B1	[1] [1]
	(i	iii)	$v = \omega \sqrt{a^2 - x^2}$ = 220 × $\sqrt{4.0^2 - 2.0^2}$ = 760 cm s ⁻¹ (incorrect value for x, 0/2 marks)		C1 A1	[2]
4	(a)	(i)	work done moving unit positive charge from infinity <u>to the point</u>		M1 A1	[2]
		(ii)	charge / potential (difference) (ratio must be clear)	B1	[1]
	(b)	(i)	capacitance = (2.7 × 10 ⁻⁶) / (150 × 10 ³) (<i>allow any appropriate values</i>)		C1	
			capacitance = 1.8×10^{-11} (allow 1.8 ±0.05)		A1	[2]
		(ii) either energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and Q = CV energy = $\frac{1}{2} \times 1.8 \times 10^{-11} \times (150 \times 10^3)^2$ or $\frac{1}{2} \times 2.7 \times 10^{-6} \times 150 \times 10^3$ = 0.20 J				
						[2]
	• •	(c) <i>either</i> since energy $\propto V^2$, capacitor has $(\frac{1}{2})^2$ of its energy left or full formula treatment energy lost = 0.15 J				

	Page 4				Paper	
			GCE A LEVEL – October/November 2010	9702	43	
5	(a)	magnetic	c flux = BA = 89 × 10 ⁻³ × 5.0 × 10 ⁻² × 2.4 × 10 ⁻² = 1.07 × 10 ⁻⁴ Wb		C1 A1	[2]
	(b)			10 ⁻² s	C1 C1	
			$= 8.0 \times 10^{-3} \text{ V}$		A1	[3]
		(ii) curre	ent = 8.0 × 10 ⁻³ / 0.12 ≈ 70 mA		M1 A0	[1]
	(c)	= 89 × 10 ≈ 3 × 10 ⁻	wire = BIL $D^{-3} \times 70 \times 10^{-3} \times 5.0 \times 10^{-2}$ $^{-4}$ (N) comment e.g. this force is too / very small (to be felt)		C1 M1 A1	[3]
6	(a)		neating depends on I^2 endent of current direction		M1 A1	[2]
	(b)	$I_0 = \sqrt{2} \times$	n power = 2 × average power		M1 M1 A1	[3]
7	(a)	force due Eq = Bqv v = E/B	e to <i>E</i> -field is <u>equal and opposite</u> to force due to <i>B</i> -field /	I	B1 B1 B1	[3]
	(b)	or	charge and mass are not involved in the equation in (a $F_{\rm E}$ and $F_{\rm B}$ are both doubled <i>E</i> , <i>B</i> and <i>v</i> do not change viation	a)	M1 A1	[2]
8	(a)		n frequency for electron to be emitted (from surface) omagnetic radiation / light / photons		M1 A1	[2]
	(b)	<i>either</i> th or ener	$\lambda or E = hf \text{ and } c = f\lambda$ reshold wavelength = (6.63 × 10 ⁻³⁴ × 3.0 × 10 ⁸) / (5.8 = 340 nm rgy of 340 nm photon = 4.4 × 10 ⁻¹⁹ J	× 10 ⁻¹⁹)	C1	
		or 450 appropria	shold frequency = 8.7×10^{14} Hz nm $\rightarrow 6.7 \times 10^{14}$ Hz ate comment comparing wavelengths / energies / frequenct fect on photo-electric current	uencies	A1 B1 B1	[4]

	Page 5		5	Mark Scheme: Teachers' version	Syllabus	Paper	,		
				GCE A LEVEL – October/November 2010	9702	43			
	Section B								
9	(a)	(i)	edge	es can be (clearly) distinguished		B1	[1]		
		(ii)		size of X-ray source / anode / target / aperture scattering of X-ray beam pixel size <i>two, 1 each</i>) her detail e.g. use of lead grid		B2 B1	[3]		
	(b)	CT rep	scan eateo	age involves a <u>single</u> exposure : exposure of a <u>slice</u> from many different angles I for different slices involves a (much) <u>greater exposure</u>		B1 M1 A1 B1	[4]		
10	(a)	U	zerc infin infin infin	ite input impedance / resistance output impedance / resistance ite gain ite bandwidth ite slew rate		Do			
		(an	y thre	ee, 1 each)		B3	[3]		
	(b)	(i)	outp with	switch open, V^- is less (positive) than V^+ but is positive switch closed, V^- is more (positive) than V^+ so output by similar scheme if V^- more positive than V^+ treated for		M1 A1 A1	[3]		
		(ii)		diodes connected correctly between output and earth green identified correctly (<i>do not allow this mark if not argued in (i)</i>)		M1 A1	[2]		
11	(a)	(i)	I / I	$I_0 = \exp(-1.5 \times 2.9)$ = 0.013		C1 A1	[2]		
		(ii)	I / I	$I_0 = \exp(-4.6 \times 0.95)$ = 0.013		A1	[1]		
	(b)	atte	enuati	ion (coefficients) in muscle and in fat are similar ion (coefficients) in bone and muscle / fat are different depends on difference in attenuation		B1 B1 B1	[3]		

Page 6				Mark Scheme: Teachers' version	Syllabus	Paper	,
				GCE A LEVEL – October/November 2010	9702	43	
12	(a)	(i)	2.	signal has same variation (with time) as the data consists of (a series of) 'highs' and 'lows' <i>either</i> analogue is continuously variable (between lim	ite)	B1 B1	
				or digital has no intermediate values	13)	B1	[3]
		(ii)	Ū	can be regenerated / noise can be eliminated extra data can be added to check / correct transmitte / two reasonable suggestions, 1 each)	d signal	B2	[2]
	(b)	(i)		logue signal is sampled at (regular time) intervals appled signal is converted into a binary number		B1 B1	[2]
		(ii)	one	channel is required for each bit (of the digital number)		B1	[1]