UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			001707111111 00100071110101110111 01101		
1	(a)	ave	erage velocity = $540 / 30$ = $18 \mathrm{m s^{-1}}$	C1 A1	[2]
	(b)	pos line	ocity zero at time $t = 0$ sitive value and horizontal line for time $t = 5$ s to 35 s t / curve through v = 0 at $t = 45$ s to negative velocity	B1 B1 B1	
			pative horizontal line from 53 s with magnitude less than positive value and izontal line to time = 100 s	B1	[4]
2	(a)	(i)	force is rate of change of momentum	В1	[1]
		(ii)	work done is the product of the force and the distance <u>moved</u> in the direction of the force	B1	[1]
	(b)	(i)	$W = Fs$ or $W = mas$ or $W = m(v^2 - u^2)/2$ or $W = force \times distance s$	A1	[1]
		(ii)	$as = (v^2 - u^2) / 2$ any subject $W = mas$ hence $W = m(v^2 - u^2) / 2$ RHS represents terms of energy or with $u = 0$ KE = $\frac{1}{2}mv^2$	M1 M1 A1	[3]
	(c)	(i)	work done = $\frac{1}{2} \times 1500 \times [(30)^2 - (15)^2]$ (=506250) distance = WD / F = 506250 / 3800 = 133 m or F = ma a = 2.533 (m s ⁻²) $\sqrt{2} = u^2 + 2as$ s = 133 m	C1 A1 C1 A1	[2]
		(ii)	the change in kinetic energy is greater or the work done by the force has to be greater, hence distance is greater (for same force)	A1	[1]
			allow: same acceleration, same time, so greater average speed and greater distance		
3	(a)	(i)	stress = force / (cross-sectional) area	B1	[1]
		(ii)	strain = extension / <u>original</u> length or change in length / <u>original</u> length	B1	[1]
	(b)		nt beyond which material does not return to the original length / shape / size en the load / force is removed	B1	[1]

Mark Scheme: Teachers' version

GCE AS/A LEVEL - October/November 2011

Syllabus

9702

Paper

22

Page 2

Page 3			Mark Scheme: Teachers' version	Syllabus	Paper		
			GCE AS/A LEVEL – October/November 2011	9702	22		
				ne maximum force / <u>original</u> cross-sectional area ole to support / before it breaks		M1 A1	[2]
	;	allo	w one	e: maximum stress the wire is able to support / before i	t breaks		
	(d)	(i)		ght line from (0,0) ect shape in plastic region		M1 A1	[2]
	((ii)	only	a straight line from (0,0)		B1	[1]
	(e)	(i)	sma	ile: initially force proportional to extension then a large Il change in force e: force proportional to extension until it breaks	extension for	B1 B1	[2]
	((ii)		does not return to its original length / permanent exterplastic region) returns to original length / no extension (as no plast	`	B1	
				elastic region)		B1	[2]
4	(a)	eled	ctric fi	ield strength = force / positive charge		B1	[1]
	(b)	(i)		ast three equally spaced parallel vertical lines ction down		B1 B1	[2]
	((ii)	E = '	$1500 / 20 \times 10^{-3} = 75000 \mathrm{V m^{-1}}$		A1	[1]
	(i	iii)	F = 0 $(W = 0)$ $q = 0$	mg and) $qE = mgmg / E = 5 \times 10^{-15} \times 9.81 / 75000$		C1 C1	
				3.5 × 10 ⁻¹⁹ C ative charge		A1 A1	[4]
	(i	iv)		mg or F now greater will move <u>upwards</u>		B1 B1	[2]
5	(a)	(i)	<i>I</i> ₁ +	$I_3 = I_2$		A1	[1]
	((ii)	E ₁ =	$\frac{I_2R_2}{2} + I_1R_2 + I_1R_1 + I_1r_1$		A1	[1]
	(i	iii)	$E_1 - I_3$	E_2 $_3r_2 + I_1 (R_1 + r_1 + R_2 / 2)$		B1 B1	[2]
		•		ss \underline{BJ} of wire changes / resistance of \underline{BJ} changes a difference in p.d across wire and p.d. across cell E_2		B1 B1	[2]
6				verlap t) displacement is the sum of the displacements of eac	h of the waves	B1 B1	[2]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9702	22

(b) waves travelling in opposite directions overlap / incident and reflected waves overlap

(allow superpose or interfere for overlap here) waves have the same speed and frequency

B1 B1 [2]

(c) (i) time period = 4×0.1 (ms) $f = 1 / T = 1 / 4 \times 10^{-4} = 2500 \text{ Hz}$ C1 A1

(ii) 1. the microphone is at an antinode and goes to a node and then an antinode / maximum amplitude at antinode and minimum amplitude at node

B1 [1]

[2]

[3]

2. $\lambda / 2 = 6.7 \text{ (cm)}$ $v = f\lambda$ $v = 2500 \times 13.4 \times 10^{-2} = 335 \text{ m s}^{-1}$

C1 A1

C1

incorrect λ then can only score second mark

7 (a) (i) the half life / count rate / rate of decay / activity is the same no matter what external factors / environmental factors or two named factors such as temperature and pressure changes are applied

B1 [1]

(ii) the observations of the count rate / count rate / rate of decay / activity / radioactivity during decay shows variations / fluctuations

B1 [1]

(b)

property	α-particle	β-particle	γ-radiation
charge	(+)2e	-е	0
mass	4 <i>u</i>	9.11 × 10 ⁻³¹ kg	0
speed	0.01 to 0.1 c	up to 0.99 <i>c</i>	С

one mark for each correct line

B3 [3]

(c) collision with molecules causes ionisation (of the molecule) / electron is removed

B1

B1 [2]