MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		1	Mark Scheme: Teachers' version	Syllabus	Paper		
				GCE AS/A LEVEL – October/November 2011	9702	41		
	Section A							
1	(a)	ĞМ	lm/r²	anal force provides the centripetal force = $mr\omega^2$ (must be in terms of ω) GM and GM is a constant		B1 B1 B1	[3]	
	(b)	(i)	1.	for Phobos, $\omega = 2\pi/(7.65 \times 3600)$ = 2.28 × 10 ⁻⁴ rad s ⁻¹		C1		
				$(9.39 \times 10^{6})^{3} \times (2.28 \times 10^{-4})^{2} = 6.67 \times 10^{-11} \times M$ $M = 6.46 \times 10^{23} \text{ kg}$		C1 A1	[3]	
			2.	$(9.39 \times 10^{6})^{3} \times (2.28 \times 10^{-4})^{2} = (1.99 \times 10^{7})^{3} \times \omega^{2}$ $\omega = 7.30 \times 10^{-5} \text{ rad s}^{-1}$ $T = 2\pi/\omega = 2\pi/(7.30 \times 10^{-5})$ $= 8.6 \times 10^{4} \text{ s}$		C1 C1		
				= 23.6 hours		A1	[3]	
		(ii)	eithe or	er almost 'geostationary' satellite would take a long time to cross the sky		B1	[1]	
2	(a)	e.g.	no ir volu cont	moving in random (rapid) motion of <u>molecules/atoms/particles</u> no intermolecular forces of attraction/repulsion volume of <u>molecules/atoms/particles</u> negligible <u>compared</u> to volume of container				
		(1 e		time of collision negligible to time between collisions <i>ach, max 2)</i>				
	(b)	(i)	1.	number of (gas) <u>molecules</u>		B1	[1]	
			2.	mean square speed/velocity (of gas molecules)		B1	[1]	
		(ii)		er pV = NkT or pV = nRT and links <i>n</i> and <i>k</i> <e<sub>K> = ½m<c²></c²></e<sub>		M1		
			clea	r algebra leading to $\langle E_K \rangle = \frac{3}{2}kT$		A1	[2]	
	(c)	(i)		of potential energy and kinetic energy of <u>molecules/at</u> rence to random (distribution)	oms/particles	M1 A1	[2]	
		(ii)		ntermolecular forces so no potential energy nge in) internal energy is (change in) kinetic ei	neray and this	B1		
			•	ortional to (change in) T	iorgy and tills	B1	[2]	

Page 3				Syllabus	Paper		
				GCE AS/A LEVEL – October/November 2011	9702	41	
3	(a)	(i)	<u>ampli</u>	itude remains constant		B1	[1]
	(ii)		<u>itude</u> decreases gradually damping		M1 A1	[2]
	(i	ii)		d = 0.80 s ency = 1.25 Hz (<i>period not 0.8 s, then 0/2</i>)		C1 A1	[2]
	(b)	(i)	•	ced) e.m.f. is proportional to of change/cutting of (magnetic) flux (linkage)		M1 A1	[2]
(ii)			as m	rent is induced in the coil agnet moves in coil nt in resistor gives rise to a heating effect		M1 A1 M1	
				nal energy is derived from energy of oscillation of the	magnet	A1	[4]
4	(a)	(i)	zero	field (strength) inside spheres		B1	[1]
	(ii)	eithe or	 r field strength is zero the fields are in opposite directions at a point between the spheres 		M1 A1	[2]
	(b)	(i)	field s	strength is (–) potential gradient <i>(not V/x)</i>		B1	[1]
	(ii)		ield strength has maximum value at $x = 11.4$ cm		B1 B1	[2]
				ield strength is zero		B1	
				either at x = 7.9 cm (allow ±0.3 cm) or at 0 to 1.4 cm or 11.4 cm to 12 cm		B1	[2]
5	(a)	(i)	Bqv(s	$\sin heta$) or Bqv(cos $ heta$)		B1	[1]
	(ii)	qE			B1	[1]
	• •			be opposite in direction to <i>F</i> _E etic field <u>into</u> plane of paper		B1 B1	[2]

	Page 4			Paper	
		GCE AS/A LEVEL – October/November 2011	9702	41	
6		od = 1/50 0.03 s		C1 A1	[2]
	(ii) pea	k voltage = 17.0 V		A1	[1]
	(iii) r.m.	s. voltage = 17.0/√2 = 12.0 V		A1	[1]
	(iv) mea	in voltage = 0		A1	[1]
	(b) power	$= V^2/R$ = 12 ² /2.4		C1	
		= 60 W		A1	[2]
7	photon e	e represents photon of specific energy emitted as a result of energy change of electron energy changes so discrete levels		M1 M1 A1	[3]
	(b) (i) arro	w from –0.85 eV level to –1.5 eV level		B1	[1]
	(ii) ∆ <i>E</i>	= hc /λ = $(1.5 - 0.85) \times 1.6 \times 10^{-19}$ = 1.04×10^{-19} J		C1 C1	
	λ	= $(6.63 \times 10^{-34} \times 3.0 \times 10^8)/(1.04 \times 10^{-19})$ = 1.9×10^{-6} m		A1	[3]
	two dark electrons	n appears as continuous spectrum crossed by dark line lines s in gas absorb photons with energies equal to the exc tons re-emitted in all directions		B1 B1 M1 A1	[4]
8		for initial number of nuclei/activity educe to one half of its initial value		M1 A1	[2]
	(ii) λ = =	ln 2/(24.8 × 24 × 3600) $3.23 \times 10^{-7} s^{-1}$		M1 A0	[1]
	(b) (i) A =	λN 5 × 10 ⁶ = 3.23 × 10 ⁻⁷ × N		C1	
		1.15×10^{13}		A1	[2]
	(ii)	$N_0 e^{-\lambda t}$ 1.15 × 10 ¹³ × exp(-{ln 2 × 30}/24.8) 4.97 × 10 ¹²		C1 A1	[2]
	• •	(4.97 × 10 ¹²)/(1.15 × 10 ¹³ – 4.97 × 10 ¹²) 0.76		C1 A1	[2]

	Page 5		6	Mark Scheme: Teachers' version	Syllabus	Paper	,		
				GCE AS/A LEVEL – October/November 2011	9702	41			
	Section B								
9	(a)	-	incre grea	iced gain eased stability iter bandwidth or less distortion ny two sensible suggestions, 1 each, max 2)		B2	[2]		
	(b)	(i)		connected to midpoint between resistors $_{\rm T}$ clear and input to V $^{\rm +}$ clear		B1 B1	[2]		
		(ii)	15 =	= $1 + R_F/R$ = $1 + 12000/R$ 860 Ω		C1 A1	[2]		
	(c)	gra		traight line from (0,0) to (0.6,9.0) traight line from (0.6,9.0) to (1.0,9.0)		B1 B1	[2]		
	(d)	eith or		relay can be used to switch a large current/voltage output current of op-amp is a few mA/very small relay can be used as a remote switch for inhospitable region/avoids using long heavy cables		M1 A1 (M1) (A1)	[2]		
10	(a)	-	low a low a sma high low	e bandwidth/carries more information attenuation of signal cost ller diameter, easier handling, easier storage, less weig security/no crosstalk noise/no EM interference by four sensible suggestions, 1 each, max 4)	ght	Β4	[4]		
	(b)	(i)	infra	-red		B1	[1]		
		(ii)	lowe	er attenuation than for visible light		B1	[1]		
	(c)	(i)	26 =	$/dB = 10 lg(P_2/P_1)$ = 10 lg(P_2/9.3 × 10 ⁻⁶) = 3.7 × 10 ⁻³ W		C1 A1	[2]		
		(ii)	pow eithe	er loss along fibre = 30 × 0.2 = 6.0 dB er 6 = 10 lg(<i>P</i> /3.7 × 10 ⁻³) <i>or</i> 6 dB = 4 × 3.7 × 10 ⁻³		C1			
			<i>or</i> inpu	$32 = 10 \log(P/9.3 \times 10^{-6})$ t power = $1.5 \times 10^{-2} W$		A1	[2]		

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2011	9702	41	
11	(a) (i)	swite so th	ch nat one aerial can be used for transmission and recept	ion	M1 A1	[2]
	(ii)		tuning circuit to select (one) carrier frequency (and reject others)		M1 A1	[2]
	(iii)		ogue-to-digital converter/ADC verts microphone output to a digital signal		M1 A1	[2]
	(iv)	· ·) amplifier <i>(not r.f. amplifier)</i> crease (power of) signal to drive the loudspeaker		M1 A1	[2]
	., .	shor large	t aerial so easy to handle t range so less interference between base stations er waveband so more carrier frequencies sensible suggestions, 1 each, max 2)		B2	[2]