UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9702	43

Section A

1 (a) (i) weight =
$$GMm/r^2$$
 C1
= $(6.67 \times 10^{-11} \times 6.42 \times 10^{23} \times 1.40)/(\frac{1}{2} \times 6.79 \times 10^6)^2$ C1
= 5.20 N A1 [3]

(ii) potential energy =
$$-GMm/r$$
 C1
= $-(6.67 \times 10^{-11} \times 6.42 \times 10^{23} \times 1.40)/(\frac{1}{2} \times 6.79 \times 10^{6})$ M1
= -1.77×10^{7} J A0 [2]

(b) either
$$\frac{1}{2}mv^2 = 1.77 \times 10^7$$
 C1
 $v^2 = (1.77 \times 10^7 \times 2)/1.40$ C1
 $v = 5.03 \times 10^3 \text{ m s}^{-1}$ A1
or $\frac{1}{2}mv^2 = GMm/r$ (C1)
 $v^2 = (2 \times 6.67 \times 10^{-11} \times 6.42 \times 10^{23})/(6.79 \times 10^6/2)$ (C1)
 $v = 5.02 \times 10^3 \text{ m s}^{-1}$ (A1) [3]

(c) (i)
$$\frac{1}{2} \times 2 \times 1.66 \times 10^{-27} \times (5.03 \times 10^{3})^{2} = \frac{3}{2} \times 1.38 \times 10^{-23} \times T$$
 C1

 $T = 2030 \text{ K}$ A1 [2]

- 2 (a) temperature scale calibrated assuming linear change of property with temperature B1 neither property varies linearly with temperature B1 [2]
 - (b) (i) does not depend on the property of a substance B1 [1]
 - (ii) temperature at which atoms have minimum/zero energy B1 [1]
 - (c) (i) 323.15 K A1 [1]
 - (ii) 30.00 K A1 [1]

	Page 3		Mark Scheme: Teachers' Version Sylla		bus Paper	
			GCE AS/A LEVEL – October/November 2011	9702	43	
3	` '		tion proportional to displacement/distance from fixed poposite directions/directed towards fixed point	oint	M1 A1	[2]
	(b) ene		= $\frac{1}{2}m\omega^2 x_0^2$ and $\omega = 2\pi f$ = $\frac{1}{2} \times 5.8 \times 10^{-3} \times (2\pi \times 4.5)^2 \times (3.0 \times 10^{-3})^2$ = 2.1×10^{-5} J		C1 C1 A1	[3]
	(c) (i)		aximum displacement ve rest position		M1 A1	[2]
	(ii)		eleration = $(-)\omega^2 x_0$ and acceleration = 9.81 or g		C1	
		9.81 $x_0 =$	= $(2\pi \times 4.5)^2 \times x_0$ 1.2 × 10 ⁻² m		A1	[2]
4		sepa block prod tunin smod preventimin	ng energy arating charge king d.c. ucing electrical oscillations ng circuits othing enting sparks ng circuits sersible suggestions, 1 each, max 2)		B2	[2]
	(b) (i)	•	induced) on opposite plate of C_1 harge conservation, charges are $-Q$, $+Q$, $-Q$, $+Q$, $-Q$		B1 B1	[2]
	(ii)	Q/C	p.d. $V = V_1 + V_2 + V_3$ = $Q/C_1 + Q/C_2 + Q/C_3$ = $1/C_1 + 1/C_2 + 1/C_3$		B1 B1 A0	[2]
	(c) (i)	ener	gy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $C = \frac{Q}{V}$ = $\frac{1}{2} \times 12 \times 10^{-6} \times 9.0^2$		C1	
			$= 4.9 \times 10^{-4} \text{ J}$		A1	[2]
	(ii)	ener	gy dissipated in (resistance of) wire/as a spark		B1	[1]

Syllabus

Paper

		•		GCE AS/A LEVEL – October/November 2011	9702	43	
5	(a)			onnected correctly (to left & right) nected correctly (to top & bottom)		B1 B1	[2]
	(b)	_	grea	er supplied on every half-cycle iter <u>average/mean</u> power sible suggestion, 1 mark)		B1	[1]
	(c)	(i)	redu	ction in the variation of the output voltage/current		B1	[1]
		(ii)		er capacitance produces more smoothing er product <i>RC</i> larger		M1	
			or	for the same load		A1	[2]
6	(a)	field	unit of magnetic flux density field normal to (straight) conductor carrying current of 1 A force per unit length is 1 N m ⁻¹			B1 M1 A1	[3]
	(b)	(i)	(and	e on particle always normal to direction of motion I speed of particle is constant) netic force provides the centripetal force		M1 A1	[2]
				/r = Bqv mv/Bq		M1 A0	[1]
	(c)	(i)		momentum/speed is becoming less ne radius is becoming smaller		M1 A1	[2]
		(ii)		spirals are in opposite directions so oppositely charged		M1 A1	[2]
				equal <u>initial</u> radii so equal (initial) speeds		M1 A1	[2]

Syllabus

Paper

	Page 5		Mark Scheme: Teachers' version Syllabus		Paper		
		GCE AS/A LEVEL – October/November 2011 9702				43	
7	(a) (i)		packet/quantum of energy of electromagnetic radiation			M1 A1	[2]
	(ii)	<u>mini</u>	mum ene	ergy to cause emission of an electron (fro	m surface)	B1	[1]
	(b) (i)		$L = \Phi + E_{\rm r}$ and h explain			M1 A1	[2]
	(ii)		or e cl	hen $1/\lambda = 0$, $\Phi = -E_{\text{max}}$ vidence of use of x-axis intercept from granooses point close to the line and substitution $\frac{hc}{\lambda} = \Phi + E_{\text{max}}$ × 10^{-19} J (allow $\pm 0.2 \times 10^{-19}$ J)	•	nd C1 A1	[2]
		2.	g	radient of graph is $1/hc$ radient = $4.80 \times 10^{24} \rightarrow 5.06 \times 10^{24}$ = $1/(gradient \times 3.0 \times 10^8)$		C1 M1	
		(Allo	E va h ow full cre not allow	= $6.6 \times 10^{-34} \mathrm{Js} \rightarrow 6.9 \times 10^{-34} \mathrm{Js}$ nooses point close to the line and substimax into $hc/\lambda = \Phi + E_{\mathrm{max}}$ alues of $1/\lambda$ and E_{max} are correct within had $= 6.6 \times 10^{-34} \mathrm{Js} \rightarrow 6.9 \times 10^{-34} \mathrm{Js}$ addit for the correct use of any appropriate of the correct use of the correct use of any appropriate of the correct use of any appropriate	alf a square method)	(C1) (M1) (A1)	[3]
8	(a) (i)		ability of unit time	decay (of a nucleus)		M1 A1	[2]
	(ii)			2 × 24 × 3600) s ⁻¹		M1 A0	[1]
	Ν	0 = 2 = 9.5	2.1 × 10 ⁻⁶ 5 × 10 ⁷			C1 C1	
	rat	10 =	(2.5×10^{-1}) 2.6×10^{-1}	²⁵)/(9.5 × 10 ⁷)		A1	[3]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9702	43

Section B

9	(a) any value greater	than, or equal to, $5\text{k}\Omega$	B1	[1]
	(b) (i) 'positive' sho	wn in correct position	B1	[1]
	green LED or	200) \times 4.5 utput is negative n, (red LED off) of incorrect value of V^+)	B1 M1 A1	[3]
	(iii) either V ⁺ inc green LED of	reases <i>or</i> $V^+ > V^-$ f, red LED on	M1 A1	[2]
10	quartz/piezo-electric c		B1	
	crystal cut to produce	or crystal to change shape asound frequency range) causes crystal to vibrate resonance vibrate by ultrasound wave	B1 B1 B1 M1 A1	[6]
11		e with which edges of structures can be seen rence in degree of blackening between structures	B1 B1	[2]
	(b) (i) $I = I_0 e^{-\mu x}$ $I/I_0 = \exp(-\mu x)$	-0.20 × 8)	C1	
	= 0.20		A1	[2]
	$I/I_0 = \exp(-i\theta)$	$\mu_1 \times x_1$) × exp($-\mu_2 \times x_2$) (could be three terms) 0.20 × 4) × exp(-12×4) 10 ⁻²² or $I/I_0 \approx 0$	C1 C1 A1	[3]
	(c) (i) sharpness ur	known/no	B1	[1]
	(ii) contrast good	l/yes (ecf from (b))	B1	[1]

			GCE AS/A LEVEL – October/November 2011	9702	43	
12	(a)	so in e.g. lowe so le e.g. UHF so m	er frequencies can be re-used (without interference) increased number of handsets can be used er power transmitters ess interference used inust be line-of-sight/short handset aerial sensible suggestions with explanation, max 4)		(M1) (A1) (M1) (A1) (M1) (A1) B4	[4]
	(b)	monitors relayed f	r at cellular exchange the signal power rom several base stations call to base station with strongest signal		B1 B1 B1 B1	[4]

Syllabus

Paper