MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2			Mark Scheme	Syllabus 9702	Paper	
			GCE AS/A LEVEL – October/November 2012		21	
1	(a) (i)		eleration = change in velocity / time (taken) cceleration = rate of change of velocity		B1	[1]
	(ii)	(ii) a body continues at constant velocity unless acted on by a resultant force				[1]
	(b) (i)	distance is represented by the area under graph distance = $\frac{1}{2} \times 29.5 \times 3 = 44.3 \text{ m}$ (accept 43.5 m for 29 to 45 m for 30)			C1 A1	[2]
	(ii)	 ii) resultant force = weight – frictional force frictional force increases with speed at start frictional force = 0 / at end weight = frictional force 				[3]
	(iii)	1.	frictional force increases		B1	[1]
		2.	frictional force (constant) and then decreases		B1	[1]
	(iv)	1.	acceleration = $(v_2 - v_1) / t = (20 - 50) / (17 - 15)$ = (-) 15 m s ⁻²		C1 A1	[2]
		2.	W – F = ma W = 95 × 9.81 (= 932) F = (95 × 15) + 932 = 2400 (2360) (2357)N		C1 C1 A1	[3]
2	(a) res	(a) resistance = potential difference / current				[1]
	(b) (i)	 (b) (i) metal wire in series with power supply and ammeter voltmeter in parallel with metal wire rheostat in series with power supply or potential divider arrangement 			B1 B1	
		or variable power supply		B1	[3]	
	(ii)	1.	intercept on graph		B1	[1]
		2.	scatter of readings about the best fit line		B1	[1]
	(iii)	use	ection for zero error explained of <i>V</i> and corrected <i>I</i> values from graph stance = $V/I = 22.(2)\Omega$ [e.g. 4.0 / 0.18]		B1 C1 A1	[3]
	(c) R =	(c) $R = 6.8 / 0.64 = 10.625$				
	%F	= (0	6V + % <i>I</i> 0.1 / 6.8) × 100 + (0.01 / 0.64) × 100 .47% + 1.56%		C1	
	∆R R		$0.0303 \times 10.625 = 0.32 \Omega$ $0.6 \pm 0.3 \Omega$		A1	[3]

	Page 3			Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2012		9702	21		
3	(a)	pre	ssure	= force / area		B1	[1]
	(b)	(b) molecules collide with object / surface and rebound molecules have change in momentum hence force acts fewer molecules per unit volume on top of mountain / temperature is l				B1 B1	
		hen	ice lo	e lower speed of molecules e less pressure			[3]
	(c)	(i)		n / V Vρg = 0.25 × 0.45 × 9.81 × 13600 15000 (15009)N		C1 C1 A1	[3]
		(ii)	p =	W / A (or using $p = \rho gh$) = 15009 / 0.45 = 3.3×10^4 Pa		A1	[1]
	((iii)	pres	sure will be greater due to the air pressure (acting on th	e surface of the	liquid) B1	[1]
4	(a)			ass through the elements / gaps / slits in the grating nto geometric shadow		M1 A1	[2]
	(b)	(i)		displacements add to give resultant displacement each wavelength travels the same path difference or are hence produce a maximum	e in phase	B1 B1 A0	[2]
				to obtain a maximum the path difference must be λ or p 360° / 2π rad λ of red and blue are different hence maxima at different angles / positions	hase difference	B1 B1 A0	[2]
		(ii)		<i>d</i> sin θ sin 61° / (2 × 625 × 10 ⁻⁹) = 7.0 × 10 ⁵		C1 A1	[2]
	(iii)	n = 1 n = 3	2 × 625 is a constant (1250) 1 $\rightarrow \lambda$ = 1250 outside visible 3 $\rightarrow \lambda$ = 417 in visible		C1	
				$4 \rightarrow \lambda = 312.5$ outside visible 120 nm		A1	[2]
5	(a)	whe leng		e load is removed then the wire / body object does not re	eturn to its origin	al shape B1	/ [1]
	(b)	(i)		ss = force / area 220 × 10 ⁶ × 1.54 × 10 ^{−6} = 340 (338.8)N		C1 A1	[2]
		(ii)	E = ($(F \times l) / (A \times e)$		C1	[0]

- (ii) $E = (F \times l) / (A \times e)$ $e = (90 \times 10^6) \times 1.75 / (1.2 \times 10^{11}) = 1.31 \times 10^{-3} m$ A1 [2]
- (c) the stress is no longer proportional to the extension B1 [1]

	Page 4	Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2012	9702	21	
6	• •	ns in the nucleus and 92 electrons around nucleus trons (in the nucleus)		B1 B1	[2]
	(b) (i) α-pa	article travels short distance in air		B1	[1]
	maj eith	small proportion in backwards direction / large angles prity pass through with no /small deflections er most of mass is in very small volume (nucleus) and is ty space	charged or mo	B1 B1 ost of atom B1	is [3]
	(c) I = Q / t n/t = (n/t = 4.	I.5 × 10 ^{−12}) /(2 × 1.6 × 10 ^{−19}) 7 × 10 ⁶ s ^{−1}		C1 C1 A1	[3]